摘要:
A television receiver includes: an edge gradient direction setting section configured to set an edge gradient direction of an interpolation pixel by use of input pixels within a reference block; a temporary reference coordinate setting section (65) configured to set four reference pixels to be vertices of a parallelogram having two sides perpendicular to the edge gradient direction; a reference pixel value setting section (66) configured to set, by use of the input pixels within the reference block regardless of whether a first reference pixel and/or a second reference pixel of the four reference pixels is/are located inside or outside the reference block, reference pixel values which are pixel values of the respective four reference pixels; and an interpolation pixel value calculating section (67) configured to calculate a pixel value of the interpolation pixel by use of the reference pixel values of the respective four reference pixels.
摘要:
A television receiver includes: an edge gradient direction setting section configured to set an edge gradient direction of an interpolation pixel by use of input pixels within a reference block; a temporary reference coordinate setting section (65) configured to set four reference pixels to be vertices of a parallelogram having two sides perpendicular to the edge gradient direction; a reference pixel value setting section (66) configured to set, by use of the input pixels within the reference block regardless of whether a first reference pixel and/or a second reference pixel of the four reference pixels is/are located inside or outside the reference block, reference pixel values which are pixel values of the respective four reference pixels; and an interpolation pixel value calculating section (67) configured to calculate a pixel value of the interpolation pixel by use of the reference pixel values of the respective four reference pixels.
摘要:
A method for interpolating an image field with image processing circuitry includes identifying, from a first row in the image field, a pixel to be interpolated. Edge direction vectors from the identified pixel and a plurality of neighboring pixels in a second row of the image field are determined. The edge direction vectors may then be combined to produce an interpolated pixel. The edge direction vectors may be combined such that the pixel is interpolated along each edge direction vector to obtain multiple interpolated pixel values. The pixel may be interpolated based on a weighted average of the interpolated pixel values.
摘要:
Methods and apparatuses use a pixel-adaptive interpolation algorithm to provide image upscaling. For each pixel location, the algorithm determines whether to use a high quality scaler algorithm (such as a polyphase filter, for example) or a directional interpolator to determine the pixel value. The determination of the appropriate interpolation algorithm is based on whether the pixel is determined to be an edge. If the pixel is determined to be an edge, the pixel-adaptive interpolation algorithm may use the directional interpolator to process the pixel; otherwise, the pixel is processed using a scaler algorithm.
摘要:
Systems and methods are provided for upscaling a digital image. A digital image to be upscaled is accessed, where the digital image comprises a plurality of pixel values. A first half pixel value is computed for a first point in the digital image based on a plurality of pixel values of the digital image surrounding the first point and an activity level. A second half pixel value is computed for a second point in the digital image, and an interpolated pixel of an upscaled version of the digital image is determined using a plurality of the pixel values, the first half pixel value, and the second half pixel value.
摘要:
To determine if a pixel exhibits artifacts, statistics are generated for the pixel and its neighbors. These statistics are compared with thresholds. If the comparison of the statistics and the thresholds suggests that the pixel exhibits a pixel artifact, then recourse can be taken, either to adjust the pixel value in some way, or to reject the angle of interpolation used in computing the value for the target pixel.
摘要:
A de-interlacing method and controller is provided. The de-interlacing method includes steps of de-interlacing based on an ith odd input pixel row of an odd field and an ith even input pixel row of an even field to generate an ith odd output pixel row, where i is a natural number; de-interlacing based on the ith even input pixel row and an (i+1)th odd input pixel row of the odd field to generate an ith even output pixel row; and adjusting i and repeating the above steps to generate a complete interpolated frame.
摘要:
A method for deinterlacing a picture is disclosed. The method generally includes the steps of (A) generating a plurality of primary scores by searching along a plurality of primary angles for an edge in the picture proximate a location interlaced with a field of the picture, (B) generating a plurality of neighbor scores by searching for the edge along a plurality of neighbor angles proximate a particular angle of the primary angles corresponding to a particular score of the primary scores having a best value and (C) identifying a best score from a group of scores consisting of the particular score and the neighbor scores to generate an interpolated sample at the location.
摘要:
Techniques and tools for interpolation of image/video content are described. For example, a tool such as a display processing module in a computing device receives pixel values of a low-resolution picture and determines an interpolated pixel value between a set of the pixel values from the low-resolution picture. The tool uses auto-regressive edge-directed interpolation that incorporates a backward projection constraint (AR-EDIBC). As part of the AR-EDIBC, the tool can compute auto-regressive (AR) coefficients then apply the AR coefficients to the set of pixel values to determine the interpolated pixel value. For the backward projection constraint, the tool accounts for effects of projecting interpolated pixel values back to the pixel values of the low-resolution picture. The tool stores the interpolated pixel values and pixel values from the low-resolution picture as part of a high-resolution picture. The tool can adaptively use AR-EDIBC depending on content and other factors.
摘要:
Systems and methods of processing pixel information associated with video image deinterlacing are disclosed. In one exemplary implementation, the method may include performing an edge adaptive interpolation process on a present field so as to determine whether an edge passes through a pixel, wherein the edge adaptive interpolation process provides edge data including a first intensity estimate for the pixel, receiving motion data associated with motion compensation processing, including an estimated motion vector for at least one pixel proximate to the pixel in at least one reference field, determining a second intensity estimate for the pixel as a function of the edge data and the motion data, and performing an intensity-calculation procedure, wherein an interpolated intensity of the pixel is calculated as a function of the first intensity estimate and the second intensity estimate.