Abstract:
A mobile communication terminal includes an IC card, a power supply, and a control section. The IC card stores an identification number. The power supply supplies power to the mobile communication terminal. The control section can set the mobile communication terminal to a communication possible state when the power is supplied from the power supply and an entered identification number is coincident with the identification number stored in the IC card. Also, the control section can set the mobile communication terminal to the communication possible state depending on a power down time period without an entering operation of the identification number when the supply of the power to the mobile communication terminal is stopped and then recovered.
Abstract:
A radio paging receiver having a display and a controller for controlling the display to be turned off automatically when no switch operation nor reception message is detected during a predetermined time period within a predetermined time zone.
Abstract:
The invention relates to the activation and automatic inactivation of keys on a mobile telephone terminal keypad, wherein the terminal includes a display and key depression sensing means. A time parameter denotes the length of time that has passed since a key was last pressed and is set to zero by means adapted to this end, and counting-up of the value of the time parameter is commenced subsequent to setting the time parameter to zero. The time parameter is compared with a threshold value (Tlock) and automatic inactivation of the keys in the keypad is initiated immediately the time parameter exceeds the threshold value (Tlock). An appropriately selected key is kept activated for activation during that time in which the keypad is in an inactivated mode, and the terminal is set to a stand-by mode.
Abstract:
A system includes an electronic device and an auxiliary device for charging the electronic device and facilitating hardware shutdown/reset of the electronic device when the electronic device is being charged. The system includes an input user interface (e.g., on the auxiliary device or the electronic device) configured to receive a user input for hardware shutdown/reset of the electronic device. The electronic device includes a switch between a battery and a system load, a control circuit configured to open the switch to disconnect the battery and the system load, and a charging interface configured to receive electric power signals from the auxiliary device to power the control circuit, such that hardware shutdown/reset of the electronic device is performed when the electronic device is being charged, thereby preventing unintentional hardware shutdown/reset during normal use. In some embodiments, wireless control signals are used to initiate hardware shutdown/reset on the electronic device.
Abstract:
Systems, methods, and computer program products are disclosed for dynamically charging an internal battery of a smart card from an interface device (such as a terminal) so that the battery life may be extended. A smart card device detects that it has interfaced with an interface device and that voltage is now being provided to the smart card device. The smart card device may divert some or most of the current being provided with the voltage to charge an internal battery of the smart card device, either concurrent to other communications between the smart card device and the interface device or before/after relevant communications are completed. As a result, the use of a smart card device contributes to the charge of the smart card device's internal battery, instead of draining it.
Abstract:
Systems, methods, and computer program products are disclosed for dynamically charging an internal battery of a smart card from an interface device (such as a terminal) so that the battery life may be extended. A smart card device detects that it has interfaced with an interface device and that voltage is now being provided to the smart card device. The smart card device may divert some or most of the current being provided with the voltage to charge an internal battery of the smart card device, either concurrent to other communications between the smart card device and the interface device or before/after relevant communications are completed. As a result, the use of a smart card device contributes to the charge of the smart card device's internal battery, instead of draining it.
Abstract:
The various methods and devices described herein relate to devices which, in at least certain embodiments, may include one or more sensors for providing data relating to user activity and at least one processor for causing the device to respond based on the user activity which was determined, at least in part, through the sensors. The response by the device may include a change of state of the device, and the response may be automatically performed after the user activity is determined.
Abstract:
The various methods and devices described herein relate to devices which, in at least certain embodiments, may include one or more sensors for providing data relating to user activity and at least one processor for causing the device to respond based on the user activity which was determined, at least in part, through the sensors. The response by the device may include a change of state of the device, and the response may be automatically performed after the user activity is determined.