Abstract:
The invention relates to a method of manufacturing compounds of the Monazite type, doped or not doped with actinides, to a method of packaging radioactive waste, high in actinides and in lanthanides by incorporating this waste in a confining matrix based on Monazite, and to a block for the packaging of radioactive waste that includes a Monazite matrix containing the radioactive elements. This method includes mixing, in the solid phase, reactants comprising an inactive compound of the lanthanide metaphosphate type Ln (PO.sub.3).sub.3 and one or more lanthanide oxides and/or one or more compounds capable of reacting with this oxide or these oxides during a thermal sintering process; the shaping of the mixture thus obtained, and the reaction sintering of said formed mixture, as a result of which a Monazite or a compound of the Monazite type is obtained.
Abstract:
A ceramic composition for the repair of porous ceramic bodies comprises a ceramic material having cations which are reactive with phosphate ions, a source of reactive phosphate ions, and filler. An aqueous slurry of the ceramic composition is prepared and applied to the damaged region of a porous ceramic body. The slurry mixture is dried within the damaged region of the porous ceramic body and heated to bind the mixture together and to bond the mixture to the porous ceramic body within the damaged region. The method of the invention allows for the in situ repair of ceramic materials without removing them from their supporting structure and can be used in the repair of ceramic tiles for spacecraft and aircraft.
Abstract:
Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 .mu.m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogenous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided.
Abstract:
There is disclosed an amorphous, polymeric material that contains phosphorous, aluminum and carbon atoms, and that is the reaction product of a buffered liquid mixture of a source of phosphorous, such as 85% phosphoric acid, a source of aluminum, such as boehmite, and an organic liquid buffer, such as a carboxylic acid. The polymeric material may be converted to a glassy or crystalline solid by heating to a temperature of at least 150.degree. C., and may be cellulated.
Abstract:
The present invention relates to a method to manufacture a composite ceramic material having a high strength combined with bioactive properties, when the material is used as a dental or orthopedic implant, which includes preparing a powder mixture, mainly comprising partly a first powder, which in its used chemical state will constitute a bioinert matrix in the finished material , and partly a second powder, mainly comprising a calcium phosphate-based material. The invention is characterized in that said first powder comprises at least one of the oxides belonging to the group consisting of titanium dioxide (TiO.sub.2), zirconium oxide (ZrO.sub.2) and aluminum oxide (Al.sub.2 O.sub.3), in that said second powder mainly comprises at least one of the compounds hydroxylapatite and tricalcium phosphate, in that a raw compact is made of said powder mixture and in that said raw compact is densified through an isostatic pressing in a hot condition (HIP) at a pressure higher than 50 MPa, a composite material being obtained, in which said matrix comprises one or several metal oxides of said first powder, in which matrix said compound hydroxylapatite and/or tricalcium phosphate is evenly dispersed.The invention also relates to a composite ceramic material as well as a body, completely or partially made of this material.
Abstract:
An oriented shaped article of a calcium phosphate type compound is disclosed, in which at least two crystallographic axes of the primary particles of which the shaped article is composed each is oriented in one direction, respectively, in at least the surface of said article. A sinter of the oriented shaped article and a processes for producing the article and the sinter are also disclosed.
Abstract:
Calcium phosphate series compound ceramics are provided in which heat-resistant inorganic short fibers such as flawless SiC or Si.sub.3 N.sub.4 are three-dimensionally dispersed in a matrix composed of calcium phosphate series compound and entangled with each other to form a high strength shaped body as well as a method of producing the same. Also, a high density silicon carbide ceramic is provided in which biological glass is impregnated and filled in a porous shaped body. These composite ceramics have high strength and high toughness and are suitable as a heat-resistant structural material or a material for bio hard texture.
Abstract translation:提供了一种磷酸钙系复合陶瓷,其中耐磨无机短纤维如无瑕疵的SiC或Si 3 N 4三维分散在由磷酸钙系列化合物组成的基质中并相互缠结以形成高强度成形体 其制造方法。 此外,提供了一种高密度碳化硅陶瓷,其中生物玻璃被浸渍并填充在多孔成形体中。 这些复合陶瓷具有高强度和高韧性,并且适合作为耐热结构材料或用于生物硬质地的材料。
Abstract:
A heat resistant, low expansion phosphate compound and sintered bodies thereof, having a composition of RZr.sub.4 P.sub.6 O.sub.24 (R is one or more cations of IIa group in the periodic table, such as Ba, Sr and Ca): an average thermal expansion coefficient between room temperature and 1,400.degree. C. of -10.about.+10.times.10.sup.-7 /.degree.C.; and having a high temperature type crystalline structure having R3c symmetry at room temperature. The sintered body of the invention can be manufactured by mixing and shaping starting materials, firing the resulting shaped body at 1,400.degree. C..about.1,700.degree. C. to provide a sintered body with a composition of RZr.sub.4 P.sub.6 O.sub.24 and then, keeping the obtained sintered body at a high temperature of not lower than a temperature of phase transition between a high temperature type and a low temperature type crystalline structure, followed by quenching.
Abstract:
Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.
Abstract:
A process for producing calcium phosphate ceramics having a porous surface is described, which comprise the steps of:a) preparing untreated calcium phosphate ceramics, which comprises a mixture of hydroxyapatite and tricalcium phosphate, andb) treating said untreated ceramics with an acidic solution to selectively dissolve the tricalcium phosphate in the surface of the ceramics.