Abstract:
The present invention relates to metallurgical processes, and more particularly to a process for producing titaniferous feedstock and fines, a process for agglomerating titaniferous fines, and a process for producing titaniferous metals and titaniferous alloys. Recovery of rare-earth, vanadium and scandium from titanium iron bearing resources is also disclosed. Selective leaching for Scandium recovery from all magnetite type resources such as ilmenite, ferro titanic resources, nickel laterites, magnetite iron resources etc.
Abstract:
A method of introducing a metalliferous feed in an ironmaking process, the method including the steps of, pre-drying an iron containing sludge by drying means to an amount of 15 to 30% (w/w) moisture, mixing the pre-dried iron containing sludge with a binder material to obtain a granulate, having a particle size of less than 4 millimeter and drying the granulate to a maximum of 3% (w/w) moisture, thereby forming the metalliferous feed, wherein the metalliferous feed is subsequently injected into a cyclone part of a metallurgical vessel.
Abstract:
A method for manufacturing green or thermally treated briquettes which are made up of at least one quick calcium-magnesium compound that is an iron-based compound. The method includes the steps of supplying a homogeneous pulverulent mixture to a roller press, the press having pockets where the pulverulent mixture is compressed to form the green briquettes. The rollers of the roller press develop linear speeds at the periphery of the rollers between 10 and 100 cm/s and linear pressures between 60 and 160 kN/cm. The method can also include a thermal treatment of the green briquettes to produce fired briquettes containing calcium ferrite, the briquettes having a Shatter Test Index less than 8%, and a porosity value greater than or equal to 30%.
Abstract:
A continuous process for low temperature reduction of metal oxides from carbonaceous material, using in situ produced reducing gas. In particular, a method of reducing metal oxide to metal in a continuous process comprising: (a) continuously introducing composite bodies comprising low rank carbonaceous material and metal oxide containing material that are in intimate contact and in a dry mix ratio of from about 1:2 to about 1:10 to an upper region of an upright retort; (b) conveying said bodies from said upper region to a heated lower region of said retort wherein said composite bodies are exposed to increasing temperature of up to about 950° C. and wherein said composite bodies are exposed to reducing gas generated in situ for a period of from about 15 minutes to about 3 hours to thereby produce a reduced metal containing product; and (c) continuously removing the reduced metal containing product from a lower region of the retort.
Abstract:
A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
Abstract:
A process for upgrading waste powders of the mining industry containing iron oxides is described, which comprises the steps of preparing a mixture comprising powder based on iron oxides, an aqueous dispersion of a thermosetting resin and optionally also carbon powder, and a catalyst of acidic nature; kneading the mixture at a temperature comprised between 5 and 100 ° C. to form a homogeneous paste, and granulating such homogeneous paste at a temperature comprised between 100 and 300 ° C., thus obtaining granules comprising powder based on iron oxides and optionally carbon powder bound by said resin that has been polymerized.
Abstract:
A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
Abstract:
Procedure for obtaining calcium aluminate from the dry waste generated in the treatment, for recovery of metallic Al and salts, of the saline dross produced in the metallurgy of secondary aluminium and calcium oxide and/or CaO precursor. The procedure may produce briquettes or pellets of precursors of calcium aluminate through cold sintering or premolten calcium aluminate through hot sintering.
Abstract:
A process for treating iron-bearing material with a carbonaceous material to form a dry mixture, wherein the amount of carbonaceous material added exceeds the stoichiometric amount required to reduce the metal oxide to elemental metal. In one embodiment, the process also includes blending an organic binder with the dry mixture. The dry mixture is agglomerated to bond the dry mixture and form green compacts. The green compacts are loaded into a heated furnace and heated for about 5-12 minutes at a temperature of between about 2100.degree.-2500.degree. F. to reduce the iron oxide containing compacts to compacts containing elemental iron and an excess amount of carbonaceous material wherein the excess amount of carbonaceous material counteracts re-oxidation of the elemental iron. The reduced compacts are then discharged from the furnace.
Abstract:
In a process for the treatment of at least one mixture of solid and liquid waste substances which contains at least one metal such as Fe and/or compounds thereof, for example oxides, the mixture occurring in a condition in which it can be used at least only with difficulty, the mixture is at least extensively homogenized and mixed with at least one very fine-grain dry substance containing fly ash and/or coke. The resulting mixture is of such a nature, for example being at least predominantly in the form of agglomerates, that it can be fed to a thermal procedure, possibly after a grading operation.