摘要:
The present invention relates to the composition and production of an engineered degradable metal matrix composite that is useful in constructing temporary systems requiring wear resistance, high hardness, and/or high resistance to deformation in water-bearing applications such as, but not limited to, oil and gas completion operations.
摘要:
A mold transfer assembly includes a transfer housing providing an interior defined by one or more sidewalls and a top. The transfer housing is sized to receive and encapsulate a mold as the mold is moved between a furnace and a thermal heat sink. An arm is coupled to the transfer housing to move the transfer housing and the mold encapsulated within the transfer housing between the furnace and a thermal heat sink. The transfer housing exhibits one or more thermal properties to control a thermal profile of the mold.
摘要:
A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
摘要:
A mold transfer assembly includes a transfer housing providing an interior defined by one or more sidewalls and a top. The transfer housing is sized to receive and encapsulate a mold as the mold is moved between a furnace and a thermal heat sink. An arm is coupled to the transfer housing to move the transfer housing and the mold encapsulated within the transfer housing between the furnace and a thermal heat sink. The transfer housing exhibits one or more thermal properties to control a thermal profile of the mold.
摘要:
Methods, systems, and compositions for manufacturing downhole tools and downhole tool parts for drilling subterranean material are disclosed. A model having an external peripheral shape of a downhole tool or tool part is fabricated. Mold material is applied to the external periphery of the model. The mold material is permitted to harden to form a mold about the model. The model is eliminated and a composite matrix material is cast within the mold to form a finished downhole tool or tool part.
摘要:
Disclosed herein are iron-based alloys having a microstructure comprising a fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises
摘要:
Methods, systems and compositions for manufacturing downhole tools and downhole tool parts for drilling subterranean material are disclosed. A model having an external peripheral shape of a downhole tool or tool part is fabricated. Mold material is applied to an external periphery of the model. The mold material is permitted to harden to form a mold about the model. The model is eliminated and a composite matrix material is cast within the mold to form a finished downhole tool or tool part.
摘要:
The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one of carbide, nitride, boride, and oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder. In addition, the hard particles may comprise at least one of (i) cast carbide (WC+W2C) particles, (ii) transition metal carbide particles selected from the carbides of titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten, and (iii) sintered cemented carbide particles.
摘要:
The present invention discloses a method of making a functionally graded metal matrix composite (MMC) sheet having a central layer of particulate matter, the particular matter having a size of at least about 30 microns. The method includes providing a molten metal containing particulate matter to a pair of advancing casting surfaces. Solidifying the molten metal while advancing the molten metal between the advancing casting surfaces to form a product comprising a first solid outer layer, a second solid outer layer, and a semi-solid central layer having a higher concentration of particulate matter than either of the outer layers. Solidifying the central layer to form a solid metal product comprised of a central layer sandwiched between the outer layers and withdrawing the metal product from between the casting surfaces.
摘要:
A wear part is formed of a diamond-containing composite material with 40 to 90% by volume of diamond grains, 0.001 to 12% by volume of carbidic phase, formed from one or more elements from the group Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, B, Sc, Y and lanthanides and 7 to 49% by volume of a metallic or intermetallic alloy with a liquidus temperature 250 HV.