Abstract:
A method of making a lithographic printing plate is disclosed which comprises the steps of (1) providing a lithographic printing plate precursor comprising (i) a support having a hydrophilic surface or which is provided with a hydrophilic layer and (ii) a coating provided thereon which comprises hydrophobic thermoplastic polymer particles; (2) exposing the precursor to IR-light or heat, thereby inducing coalescence of the thermoplastic polymer particles at exposed areas of the coating; (3) applying a hydrophilic protective layer on the coating; and then, (4) while the precursor is mounted on a print cylinder of a printing press, developing the precursor by supplying an aqueous dampening liquid and/or ink to said precursor while rotating said print cylinder whereby the coating and the hydrophilic protective layer are removed from the support on the non-exposed areas. According to the above method, the hydrophilic protective layer can be applied by coating a solution by means a spray nozzle or a jet nozzle and wherein the applied hydrophilic protective layer improves clean-out in an on-press development.
Abstract:
A polymerizable composition contains (A) a dye which is soluble in an organic solvent and in an alkaline aqueous solution and has an absorption in 700 to 1200 nm, (B) a radical polymerization initiator, (C) a compound having an ethylenically unsaturated bond, and (D) a binder polymer.
Abstract:
There are provided a negative-working photosensitive composition which can be cured by infrared rays and is less likely to suffer polymerization inhibition by oxygen during radical polymerization, and also exhibits high adhesion with a metal, and a negative-working photosensitive lithographic printing plate which is capable of directly forming images by irradiation with infrared rays from a solid or semiconductor laser based on digital signals, and also has high sensitivity and excellent printing durability. The negative-working photosensitive composition contains an infrared absorber (A), an organoboron compound (B) which functions as a polymerization initiator by using in combination with the infrared absorber (A), a compound having a polymerizable unsaturated group (C) and a diazo resin (D), and the negative-working photosensitive lithographic printing plate comprises a support, and a photosensitive layer containing the negative-working photosensitive composition formed on the support.
Abstract:
Disclosed is a presensitized plate composed of a support having thereon an image recording layer which includes: an infrared absorber (A) that is a cyanine dye having at least one fused ring composed of a nitrogen-containing heterocycle in combination with an aromatic ring or a second heterocycle, and having on the aromatic ring or second heterocycle an electron-withdrawing group or a heavy atom-containing group, a radical generator (B), and a radical-polymerizable compound (C), and which is removable with printing ink and/or dampening water. The presensitized of the present invention can be imaged with an infrared light-emitting laser to directly record an image from digital data on a computer or the like and is then subjected to on-machine development without carrying out a development step, which is capable of providing a large number of good impressions with a practical amount of energy.
Abstract:
Disclosed is a planographic printing plate material comprising a support and provided thereon, a hydrophilic layer containing a light-to-heat conversion material and a thermosensitive image formation layer in that order, wherein the thermosensitive image formation layer contains a latex containing a hydrophobic component and a hydrophilic component as a protective colloid.
Abstract:
A photosensitive composition comprising: (A) a polymerizable compound represented by the following formula (I): A—{O—[(CH(—R1)CH(—R2))m—O]n—C(═O)—C(—R3)═CH2}p (I) wherein R1, R2and R3 each represents a hydrogen atom or a methyl group, A represents a polyhydric alcohol residue or a polyhydric phenol residue, m represents an integer of from 1 to 6, n represents an integer of from 1 to 20, and p represents an integer of from 1 to 6; (B) an infrared absorber; and (C) an onium salt.
Abstract:
A lithographic printing plate precursor which is capable of undergoing on-press development by supplying at least one of printing ink and dampening water and includes a support and an image-recording layer, wherein the image-recording layer contains at least one of compounds represented by the formulae (1) to (3) as defined herein.
Abstract:
A photosensitive composition containing: a sensitizing dye represented by the formula (1) as defined herein; an initiator compound capable of generating a radical, an acid, or a base; and a compound whose physical or chemical characteristic irreversibly changes by at least one of a radical, an acid, and a base.
Abstract:
A planographic printing plate precursor comprises a substrate having disposed thereon a hydrophilic layer which includes hydrophilic graft chains and a crosslinked structure formed through hydrolytic polycondensation of an alkoxide of an element selected from Si, Ti, Zr and Al. An aluminum substrate for a planographic printing plate includes a hydrophilic surface which is formed by a hydrophilic polymer including a functional group that chemically bonds to the aluminum substrate directly or is chemically bindable to the aluminum substrate via structural component having a crosslinking structure. A surface-hydrophilic member comprises a substrate having disposed thereon a hydrophilic layer, wherein the hydrophilic layer includes hydrophilic graft chains and a crosslinked structure formed through hydrolytic polycondensation of an alkoxide of an element selected from Si, Ti, Zr and Al.
Abstract:
An on-press development or non-processing (non-development) type lithographic printing plate precursor capable of giving a printout image having a large lightness difference, and a lithographic printing method using this lithographic printing plate precursor are provided, a lithographic printing plate precursor comprising a support and a photosensitive-thermosensitive layer capable of recording an image by infrared laser exposure, the lithographic printing plate precursor being capable of performing a printing by loading on a printing press without passing through a development processing step after recording an image, or by recording an image after loading on a printing press, wherein said photosensitive-thermosensitive layer comprises (1) an infrared absorbent and (2) a discoloring agent or discoloration system capable of generating a color change upon exposure; and the lithographic printing method performing a printing using the above-described lithographic printing plate precursor.