Abstract:
In a hydraulic brake pressure control device of a load responsive type, a housing is attached to one of a rear wheel side member and a vehicle body side member which are connected with each other through a suspension mechanism and a lever is carried on the housing through a pivot axis to be pivotable toward the housing for direct or indirect abutting engagement with a piston formed with a valve portion. A spring member is interposed between a free end portion of the lever and the other of the rear wheel side member and the vehicle body side member for urging the lever toward the piston by means of a spring force depending on the distance between the rear wheel side member and the vehicle body side member. Further, an anti-vibration member is provided between the lever and the housing for moderating the collision of the lever with the piston when the lever is repetitively disengaged from, and engaged with, the piston during the vehicle running a bumpy road.
Abstract:
In a disc brake, an anti-squeal shim plate is disposed between the backing plate of each pad and a corresponding press member which presses the pad toward a disc rotor. The press member presses the pad against the disc rotor via the anti-squeal shim plate in order to generate braking force. A plurality of dimples are provided on the anti-squeal shim plate in order to limit to a specific area a press contact area between the backing plate and the press member during braking with very small pressing force.
Abstract:
In a hydraulic joint structure for joining respective tubular joint portions of two members, opposed pressure-contact surfaces of the two members for preventing loosening form a downstream space on the downstream side of a seal member. A passage is formed on the pressure-contact surfaces in such a manner that when working fluid leaks from the upstream side of the seal member to the downstream space via a clearance between the seal member and the tubular joint portions, the passage permits the working fluid to flow from the downstream space to an external space in the state in which the pressure-contact surfaces are in pressure contact. The passage is formed in such a manner that the passage extends in a circumferential direction of the thread portions, and communicates at one end with the downstream space and at the other end with the external space.
Abstract:
With a brake hydraulic pressure generator in which the brake operating force is applied to a pressure adjusting valve through a stroke simulator and hydraulic pressure supplied from the hydraulic pressure source is adjusted to a value corresponding to the brake operating force by the pressure adjusting valve, at the relaxing of the brake operating force, the return stroke until the output hydraulic pressure of the pressure adjusting valve begins to drop is large. Thus a delay in the decrease of an output hydraulic pressure occurs. This worsens brake feeling. To solve this problem, the sliding resistance of the simulator piston is set to be greater than that of the input piston so that at the relaxing of the brake operating force, the input piston moves relative to the pressure adjusting valve before the simulator piston moves relative to the input piston. This quickens response of an output hydraulic pressure drop relative to the relaxing of the brake operating force.
Abstract:
A braking control device for a vehicle includes an upper braking unit configured to pressurize a supply pressure by throttling, with a pressure adjustment valve, a circulation flow discharged by a fluid pump driven by an electric motor, and a lower braking unit disposed between the upper braking unit and a wheel cylinder and configured to pressurize the supply pressure to output a wheel pressure to the wheel cylinder. In a case where the lower braking unit pressurizes the wheel pressure, the upper braking unit reduces a rotation number of the electric motor as compared with a case where the lower braking unit does not pressurize the wheel pressure.
Abstract:
A control device for a vehicle includes one or more processors configured to: perform feedback control on an acceleration of the vehicle by controlling a driving force of an internal combustion engine mounted on the vehicle based on a difference between a requested acceleration of the vehicle from an application and an actual acceleration of the vehicle; calculate a first predicted acceleration that is a predicted acceleration of the vehicle on an assumption that the internal combustion engine is controlled into a fuel-cut state; and control the internal combustion engine into the fuel-cut state without performing the feedback control when a coasting condition that is predetermined is satisfied and the first predicted acceleration is equal to or higher than a lower limit value that is predetermined as a negative value.
Abstract:
This braking control device comprises a first unit that outputs supply pressure in accordance with the amount of operation of a braking operation member, a second unit that is provided between the first unit and a wheel cylinder and that increases the supply pressure and outputs a wheel pressure to the wheel cylinder, a communication bus that transfers signals between the first unit and the second unit, an operation amount sensor that detects the amount of operation, and a supply pressure sensor that detects the supply pressure. In the braking control device, the first unit controls the supply pressure so as to bring the supply pressure close to a target pressure calculated on the basis of the amount of operation. When the first unit is abnormal, the second unit increases the wheel pressure on the basis of the deviation between the target pressure and the supply pressure.
Abstract:
A brake system includes electric braking devices. Each of the electric braking devices includes an electric motor. In the brake system, it is determined whether regenerative power is generated by the electric motors, and when it is determined that regenerative power is generated by any one of the electric motors, an electric motor other than the electric motor determined as generating regenerative power is driven so that a power consumption amount of the other electric motor is increased.
Abstract:
A motor unit includes: a motor provided with a first chamber and including a shaft; a rotary member coupled to the shaft outside the first chamber; a housing provided with a second chamber accommodating the rotary member; and a guide member including a peripheral wall between the first chamber and the second chamber, the guide member being provided with a third chamber inside the peripheral wall, wherein the motor unit is provided with a fourth chamber which is outside the first chamber and is open to an inner surface of the second chamber and/or the third chamber, the inner surface of the third chamber includes a guide, and the guide extends farther away from a rotation axis as is closer to the fourth chamber.
Abstract:
A brake control device includes a brake operation member, a pressurization unit, a master cylinder unit, a connection path connecting a separation chamber and a reaction force chamber, an electromagnetic valve at the connection path, and a control device. The control device includes a specified control section configured to, when the brake operation member is operated in a closed state of the electromagnetic valve, execute activation-time control in which the pressurization unit supplies fluid to a servo chamber based on a predetermined pattern, a determination section configured to determine whether a pressure difference between pressure in the reaction force chamber and pressure in the separation chamber, is equal to or less than a threshold value, and a valve control section configured to open the electromagnetic valve when the determination section determines the pressure difference is equal to or less than the threshold value after start of the activation-time control.