Abstract:
The invention relates to DAS observation has been proven to be useful for monitoring hydraulic fracturing operations. While published literature has shown focus on the high-frequency components (>1 Hz) of the data, this invention discloses that much of the usable information may reside in the very low frequency band (0-50 milliHz). Due to the large volume of a DAS dataset, an efficient workflow has been developed to process the data by utilizing the parallel computing and the data storage. The processing approach enhances the signal while decreases the data size by 10000 times, thereby enabling easier consumption by other multi-disciplinary groups for further analysis and interpretation. The polarity changes as seen from the high signal to noise ratio (SNR) low frequency DAS images are currently being utilized for interpretation of completions efficiency monitoring in hydraulically stimulated wells.
Abstract:
Imperfect separation at the higher frequencies has been observed and was eventually was tracked down to the poor GFE signal that is normally used in the inversion. The invention thus uses a “derived GFE” for each source, obtained by comparing the shot records and remove the differences, instead of the prior estimated GFE signal put out by the controller, thus accurately maximizing the separation of the data.
Abstract:
A logic used to auto-adjust plunger lift system parameters optimizes oil and gas well production with minimal human interaction. The auto-adjustments place and maintain the well in an optimized state wherein the well has either a Minimum-OFF time (e.g., length of time just long enough for the plunger to reach the bottom of the well), or Minimum-ON time (e.g., flowing just long enough for the plunger to reach the surface) cycle.
Abstract:
Disclosed are methods of characterizing kerogen and its hydrocarbon generation potential using NMR as the primary analytical tool, and using such data to derive the kinetics of hydrocarbon generation and alteration, thus predicting the hydrocarbon potential of source rock in geological setting, which can then be used in petroleum exploration and production.
Abstract:
A method for accelerating the decision making process for reservoir risk management is described. In particular, an ensemble based decisions and filter are used to quickly compare different information scenarios to determine the best strategy for developing a hydrocarbon-containing reservoir.
Abstract:
Estimating in-situ stress of an interval having drilling response data is described. Estimating involves obtaining drilling response data of a data rich interval with available data. Estimating relative rock strength as a composite value that includes in-situ stress and rock strength. Estimating a Poisson's ratio from the relative rock strength. Generating a stress model that includes uniaxial strain model using the Poisson's ratio. Verifying the stress model with the available data. Applying the stress models in a non-data rich interval.
Abstract:
Methods and systems for depth and radial orientation detection are provided. Methods for determining the depth or radial orientation of one or more downhole components include the steps of providing a target mass and a using a detection device for detecting the depth and/or orientation of the target mass. In some cases, the target mass is initially nonradioactive and then, after installing the target mass downhole, it may be irradiated to form a relatively short-lived radioactive target mass, which may then be detected with a radiation detector. In this way, the target mass acts as a depth or radial orientation marker. Where the target mass is situated downhole in a known radial relationship to another downhole component, the radial orientation of the other downhole component may be deduced once the radial orientation of the target mass is determined. Advantages include higher accuracies and reduced health, safety, and environmental risks.
Abstract:
A new method of assessing wettability of a reservoir rock is provided, using a mineral oil/alkane saturated sample first, a crude oil and water saturated sample equivalent to natural reservoir rock second, and a third crude oil saturated, water free sample, measuring different wettability states and comparing the slopes of all three adjusted values to determine a wettability state for the reservoir rock.
Abstract:
The invention relates to a process for treating an aqueous solution from a subterranean formation of an oil and gas operation. The aqueous solution can be removed from the subterranean formation and treated in a heated centrifugal separator. The heated centrifugal separator can separate the kinetic hydrate inhibitor from the aqueous solution, and then the aqueous solution can be reintroduced into the subterranean formation.
Abstract:
A method for removing hydrogen sulfide from a liquid stream is described. The method includes contacting the liquid stream including a first amount of hydrogen sulfide with a first side of a porous gas-liquid separation membrane. The hydrogen sulfide moves through the pores of the membrane from the first side to a second, opposite side of the membrane. The method further includes contacting a receiving fluid with the second, opposite side of the porous membrane to receive the hydrogen sulfide. The liquid stream is thus converted to a reduced-sulfide liquid stream having a second amount of hydrogen sulfide that is less than the first amount of hydrogen sulfide. A method for removing ammonia from a liquid stream is also described.