Abstract:
A decoupled gas turbine engine includes a high spool assembly and a low spool assembly each having a rotational axis that are spaced from one-another. The engine further includes a combustor that may have a centerline spaced from the rotational axes of each spool assembly. Turning ducts of the engine are configured to re-direct airflow from one spool assembly to the next and/or between one spool assembly and the combustor.
Abstract:
A nozzle assembly for a dual gas turbine engine propulsion system includes a housing mountable proximate to a first bypass passage of a first gas turbine engine and a second bypass passage of a second gas turbine engine, first and second upper doors, and first and second lower doors. Each of the first and second upper doors and the first and second lower doors are pivotally mounted to the housing for movement between a stowed position and a deployed position in which airflow through the first and second bypass passages is redirected relative to respective centerline axes of the first and second gas turbine engines.
Abstract:
A gas turbine engine according to an example of the present disclosure includes, among other things, a fan section, a first compressor section including three (3) or more stages, a second compressor section including between eight (8) and thirteen (13) stages, and a first turbine section operable for driving the first compressor section, the first turbine section including between three (3) and six (6) stages, a second turbine section operable for driving the second compressor section, and a gear train defined along an engine centerline axis. One of the first turbine section and the second turbine section is operable to drive the fan section through the gear train.
Abstract:
A rotor assembly for a turbine engine includes a rotor disk constructed of a first material. Multiple rotor blades constructed of a second material are connected to the rotor disk via a diffusion material.
Abstract:
A gas turbine engine comprises a first compressor, a second compressor, a starter generator and a clutch. The starter generator is coupled to the first compressor. The clutch selectively couples the second compressor and the first compressor. The clutch is disposed between a first shaft and a second shaft to engage the first shaft with the second shaft at rest. A flyweight system is engaged with the clutch mechanism to permit freewheeling of the first shaft relative to the second shaft when subject to rotational motion beyond a threshold speed. A method for starting a gas turbine engine comprises engaging a low pressure compressor with a high pressure compressor utilizing a clutch, rotating the low pressure compressor and the high pressure compressor utilizing a starter generator coupled to the low pressure compressor, igniting the gas turbine engine, and disengaging the clutch at an operational speed of the gas turbine engine.
Abstract:
A turbofan engine includes an engine case, a gaspath through the engine case, a fan having a circumferential array of fan blades, a compressor in fluid communication with the fan, a combustor in fluid communication with the compressor, and a turbine in fluid communication with the combustor. The turbine has a fan drive turbine section having 3 to 6 blade stages. A speed reduction mechanism couples the fan drive turbine section to the fan. A bypass area ratio is between about 8.0 and about 20.0. A ratio of maximum gaspath radius along the fan drive turbine section to maximum radius of the fan is less than about 0.50. A ratio of a turbine section airfoil count to the bypass area ratio is between about 10 and about 170. The fan drive turbine section airfoil count being the total number of blade airfoils and vane airfoils of the fan drive turbine section.
Abstract:
A gas turbine engine includes a compressor section having a plurality of compressor stages, a combustor fluidly connected to the compressor section, a turbine section fluidly connected to the combustor section, the turbine section having at least one stage, a compressor bleed structure disposed in one of the plurality of compressor stages and operable to remove air from the compressor stage, a heat exchanger having an input connected to the compressor bleed, and an output connected to an active cooling system of at least one turbine stage, and wherein the compressor stage in which the compressor bleed structure is disposed includes airflow at a pressure above a minimum pressure threshold, and wherein the airflow has a temperature above a maximum temperature threshold.
Abstract:
A gas turbine engine comprises a plurality of fan rotors. A gas generator comprises at least one compressor rotor, at least one gas generator turbine rotor, a combustion section, and a fan drive turbine downstream of at least one gas generator turbine rotor. A shaft is configured to be driven by the fan drive turbine. The shaft engages gears to drive the plurality of fan rotors. A system controls the amount of power supplied to the plurality of fan rotors. A method of operating a gas turbine engine is also disclosed.
Abstract:
A turbine cooling air generation system for a gas turbine engine includes a first fluid pathway connecting a compressor bleed outlet and a mixing valve, a second fluid pathway connecting the compressor bleed outlet and an input of a heat exchanger, and a third fluid pathway connecting an output of the heat exchanger and the mixing valve. The mixing valve is further connected to an input of a turbine stage active cooling system.
Abstract:
A cooling system for gas turbine engines includes a turbine rotor compartment defining a cooling air plenum. A plurality of turbine discs are rotatably housed within the rotor compartment. A cooling air inlet is in fluid communication with the plenum. Each turbine disc includes a cooling outlet in fluid communication with the plenum for cooling the rotor compartment.