Abstract:
An intentional fluid manipulation apparatus (IFMA) assembly with a first thrust apparatus that imparts a first induced velocity to a local free stream flow during a nominal operation requirement. The first thrust apparatus creates a streamtube. A second thrust apparatus is located in a downstream portion of the streamtube. The second thrust apparatus imparts a second induced velocity to the local free stream flow. The second induced velocity at the location of the second thrust apparatus has a component in a direction opposite to the direction of the first induced velocity at the location of the second thrust apparatus.
Abstract:
A discharge system of a separated twin-flow turbojet for an aircraft, supported by a suspension mast, is disclosed. The system includes a main nozzle delimited by an annular cowl with a slot of annular shape defining upstream and downstream portions of the cowl and which is traversed by the suspension mast. The downstream portion of the cowl of the main nozzle includes a first part extending downstream from the upstream portion of the cowl to a trailing edge of the main nozzle, on either side of the suspension mast along two predefined angular sectors; and a second part formed from an internal contour of the slot and having a trailing edge with a diameter smaller than that of the trailing edge associated with the first part of the downstream portion of the cowl. Connecting walls laterally connect the first and second parts of the downstream portion.
Abstract:
A system of conjoined gas turbine engines has a first engine with a first propulsor having a first axis and a first engine core having a second axis, and a second engine with a second propulsor having a third axis and a second engine core having a fourth axis. The first axis and third axis are parallel to one another; and the second axis and fourth axis are angled from one another.
Abstract:
A disclosed turbofan engine includes a gas generator section for generating a gas stream flow. A speed reduction device is driven by the power turbine. A propulsor section includes a fan driven by the power turbine through the speed reduction device at a second speed lower than the first speed for generating propulsive thrust as a mass flow rate of air through a bypass flow path. The fan includes a tip diameter greater than about forty-five (45) inches and an Engine Unit Thrust Parameter (“EUTP”) defined as net engine thrust divided by a product of the mass flow rate of air through the bypass flow path, a tip diameter of the fan and the first rotational speed of the power turbine for cruise, climb and take-off power conditions.
Abstract:
An assembly is provided for an aircraft propulsion system. This assembly includes a thrust reverser cascade, a fan ramp fairing and a blocker door. The thrust reverser cascade extends along an axial centerline from a forward cascade end to an aft cascade end. The fan ramp fairing is disposed at the forward cascade end. The fan ramp fairing is configured with a fairing surface that provides a forward boundary for bypass air flowing into the thrust reverser cascade during a first mode of operation. The blocker door is configured to completely axially overlap the fairing surface during a second mode of operation.
Abstract:
Apparatus, systems and methods provide for an integrated primary nozzle. The integrated primary nozzle defines an annular vent and includes an integrated panel that includes an acoustic treatment. The integrated panel includes a combination of an integrally formed portion of an outer wall of the primary nozzle, an acoustic treatment, and an aft cowl. An annular vent is defined by a gap between an outer surface of the integrated panel and an inner surface of a forward cowl.
Abstract:
A turbofan engine includes a gas generator section for generating a gas stream flow with higher energy per unit mass flow than that contained in the ambient air and a power turbine that converts the gas stream flow into shaft power. The turbofan engine further includes a propulsor section including a fan driven by the power turbine through a geared architecture at a second speed lower than the first speed for generating propulsive thrust as a mass flow rate of air through a bypass flow path. An Engine Unit Thrust Parameter defined as net engine thrust divided by a product of the mass flow rate of air through the bypass flow path, a tip diameter of the fan and the first rotational speed of the power turbine is less than about 0.15 at a take-off condition.
Abstract:
An example nacelle assembly for a gas turbine engine includes a nacelle defined about an axis and defining a boundary of a fan bypass flow path. A fan variable area nozzle includes a plurality of inserts movably mounted to said nacelle. Each of the multiple of inserts is located at a circumferential position about the nacelle. The multiple of inserts are each independently moveable into the fan bypass flow path relative the nacelle to selectively vary a fan nozzle exit area.
Abstract:
An exhaust system for an aircraft has a primary exhaust duct for communicating exhaust gas from an engine exhaust exit and is configured for movement with the engine. A secondary exhaust duct is in fluid communication with the primary exhaust duct and is movably mounted to the airframe. The secondary duct has a portion selectively rotatable relative to the remainder of the secondary duct for directing the exhaust gas vector. The system has means for maintaining a generally consistent relative alignment between the primary duct and the secondary duct.
Abstract:
A turbine exhaust nozzle includes an inner shell disposed coaxially inside an outer shell to define a flow duct terminating in an outlet at a trailing edge of the outer shell. The inner shell is non-axisymmetric and varies in axial slope angle circumferentially around the duct.