Abstract:
A method includes communicating between at least first and second devices over a bus in accordance with a bus address space, including providing direct access over the bus to a local address space of the first device by mapping at least some of the addresses of the local address space to the bus address space. In response to indicating, by the first device or the second device, that the second device requires to access a local address in the local address space that is not currently mapped to the bus address space, the local address is mapped to the bus address space, and the local address is accessed directly, by the second device, using the mapping.
Abstract:
A method includes, in a processor, receiving first and second operations for periodic execution with respective specified time periods. Respective actual time periods having no common divisor are derived from the specified time periods. The first and second operations are executed periodically with the respective actual time periods.
Abstract:
A method for data storage includes configuring a driver program on a host computer to receive commands in accordance with a protocol defined for accessing local storage devices connected to a peripheral component interface bus of the host computer. When the driver program receives, from an application program running on the host computer a storage access command in accordance with the protocol, specifying a storage transaction, a remote direct memory access (RDMA) operation is performed by a network interface controller (NIC) connected to the host computer so as to execute the storage transaction via a network on a remote storage device.
Abstract:
A connector cage includes a bezel, having a plurality of slots formed therein, and a cage structure including upper and lower sides and multiple partitions extending between the upper and lower sides to define receptacles for receiving cable connectors. Multiple tabs protrude out of at least one of the sides in locations at which the tabs fit into the slots in the bezel, and are folded over the slots so as to secure the cage structure to the bezel. The cage may also include multiple snap-on spring subassemblies, each spring subassembly secured to a front end of a respective partition and comprising leaves that bow outward to contact the shells of the connectors that are inserted into the receptacles adjacent to the partition.
Abstract:
A Network Interface Controller (NIC) includes a network interface, a peer interface and steering logic. The network interface is configured to receive incoming packets from a communication network. The peer interface is configured to communicate with a peer NIC not via the communication network. The steering logic is configured to classify the packets received over the network interface into first incoming packets that are destined to a local Central Processing Unit (CPU) served by the NIC, and second incoming packets that are destined to a remote CPU served by the peer NIC, to forward the first incoming packets to the local CPU, and to forward the second incoming packets to the peer NIC over the peer interface not via the communication network.
Abstract:
A method includes receiving in a network switch of a communication network communication traffic that originates from a source node and arrives over a route through the communication network traversing one or more preceding network switches, for forwarding to a destination node. In response to detecting in the network switch a compromised ability to forward the communication traffic to the destination node, a notification is sent to the preceding network switches. The notification is to be consumed by the preceding network switches and requests the preceding network switches to modify the route so as not to traverse the network switch.
Abstract:
A method includes receiving a dividend and a divisor for performing a division operation. Numbers p and n are found, for which the divisor equals 2n(1+2p). An interim result, which is equal to a reciprocal of 1+2p multiplied by the dividend, is calculated. The interim result is divided by 2n to produce a result of the division operation.
Abstract:
A method for communication, includes allocating, in a network interface controller (NIC) a single dynamically-connected (DC) initiator context for serving requests from an initiator process running on the initiator host to transmit data to multiple target processes running on one or more target nodes. The NIC transmits a first connect packet directed to a first target process and referencing the DC initiator context so as to open a first dynamic connection with the first target process. The NIC receives over the packet network, in response to the first connect packet, a first acknowledgment packet containing a first session identifier (ID). Following receipt of the first acknowledgment packet, the NIC transmits one or more first data packets containing the first session ID over the first dynamic connection from the NIC to the first target process. Dynamic connections with other target processes may subsequently be handled in similar fashion.
Abstract:
A method includes receiving in a network switch of a communication network communication traffic that originates from a source node and arrives over a route through the communication network traversing one or more preceding network switches, for forwarding to a destination node. In response to detecting in the network switch a compromised ability to forward the communication traffic to the destination node, a notification is sent to the preceding network switches. The notification is to be consumed by the preceding network switches and requests the preceding network switches to modify the route so as not to traverse the network switch.
Abstract:
A method includes monitoring a use of a cable assembly that includes a communication cable terminated by a termination module. Data indicative of the use is written to a writeable non-volatile memory in the termination module. The use of the cable assembly is acted upon by reading the data from the non-volatile memory.