Abstract:
An integrated metal detector-portable medical device adapted to identify metals in a human body, where the metal detector is in connection with the portable medical device. The metal detector includes: at least one transmitting means adapted to generate a second magnetic field so as to induce a magnetic field generated by a metal; at least one sensor adapted to detect a magnetic field generated by the metals to be detected; and at least one signaling means adapted, upon detection of a magnetic field, to alert the identification of metals, if the intensity of a magnetic field is above a predetermined value.
Abstract:
A magnetic resonance imaging (MRI) imaging system, having an MRI device that images at least a portion of an animal. The system includes: a photon transmitter that is introducible within the body of an animal; at least one imaging photon detector that detects fluorescence excited within the animal by transmitted photons from the photon transmitter; and an image processor that superimposes an MRI image and a photon detector image to yield a combined image.
Abstract:
A system for integrating analysis and production of a food product. The system includes: a food production apparatus for producing a food product; an MRI device configured to provide at least one image of at least a portion of the product's components; and a processor for analyzing and controlling the production of the product. The system analyzes an MRI image online and communicates results of the analysis to the food production apparatus.
Abstract:
A method of determining rheological properties of a fluid. The method includes: providing an open-bore tube and defining within the bore a three dimensional grid (3DG) of voxels; defining at least an inlet cross section (ICS) and an outlet cross section (OCS); defining a volume of interest within the bore between the ICS and the OCS; obtaining rheological properties of the fluid; applying a pressure gradient to the bore between the ICS and the OCS; and nuclear magnetic resonance imaging the fluid within the volume of interest to determine various aspects of the fluid.
Abstract:
The present invention provides a permanent magnet arrangement, comprising: a. a mobile permanent magnet grouping; b. a facing plate constructed from ferromagnetic material; c. a an air gap defined by the spacing between said permanent magnet grouping and said facing plate; d. a yoke of predetermined shape formed from magnetically permeable material, said yoke holding said front surfaces of said magnets in a substantially parallel arrangement relative to said facing plate; e. means for individually moving said permanent magnets in said magnet grouping along an axis generally perpendicular to said facing plate; f. means for moving said permanent magnet grouping in a plane generally parallel to said facing plate; wherein a magnetic field within an active volume located in said air gap between said permanent magnet grouping and said facing plate is provided, said magnetic field sufficiently homogeneous for performance of MRI.
Abstract:
The present invention discloses an imaging device within an MRI. In a magnetic resonance imaging system, a spatially fixed coupled imaging device (SFCID) for producing combined anatomical and real time functional light images, the SFCID functionally incorporates a maneuverable imaging system MIS with a coupled imaging system CIS.
Abstract:
Generally, a system for generating a magnetic field having a desired magnetic field strength and/or a desired magnetic field direction is provided. The system can include a plurality of magnetic segments and/or a plurality of ferromagnetic segments. Each magnetic segment can be positioned adjacent to at least one of the plurality of magnetic segments. Each ferromagnetic segment can be positioned adjacent to at least one of the plurality of magnetic segments. In various embodiments, a size, shape, positioning and/or number of magnetic segments and/or ferromagnetic segments in the system, as well as a magnetization direction of the magnetic segments can be predetermined based on, for example, predetermined parameters of the system (e.g., a desired magnetic field strength, direction and/or uniformity of the magnetic field, a desired elimination of a magnetic fringe field and/or total weight of the system) and/or based on a desired application of the system (e.g., performing a magnetic resonance imaging of at least a portion of a patient and/or performing a magnetic resonance spectroscopy of a sample).
Abstract:
A maneuverable RF coil assembly, useful for being maneuvered at both positions: (i) over at least a portion of a neonate immobilized within a cradle at time of MR imaging; and (ii) below or aside the cradle when it is not required for imaging. The maneuverable RF coil assembly comprises at least one RF coil and maneuvering mechanism. The maneuvering mechanism comprises both: (i) a linear reciprocating mechanism for approaching or otherwise drawing away at least one coil to and from the neonate; and (ii) tilting mechanism for placing at least one coil away from the neonate.
Abstract:
An MRI image is generated base on a first MRI scan and a second MRI scan. Using corresponding first and second k-space grid data, at least one instance of subject movement during acquisition of scan line data as part of the first MRI scan or second MRI scan is identified. Motion sensor data is consulted to determine if each identified instance of subject movement was during the first MRI scan or the second MRI scan. Corrected k-space grid data is generated using the other k-space grid data on a scan line by scan line basis and a resulting MRI image is generated therefrom.
Abstract:
A magnetic field device, with a first magnet, a first ferromagnetic element positioned adjacent to the first magnet, a second magnet, a second ferromagnetic element positioned adjacent to the second magnet and relative to the first ferromagnetic element to create a gap between the first ferromagnetic element and the second ferromagnetic element, and a third magnet positioned between the first ferromagnetic element and the second ferromagnetic element and within the gap.