Abstract:
A current sensor includes a current path to be measured, a neighboring current path that is provided in the vicinity of the current path to be measured, first and second magnetoelectric transducers having a main sensitivity axis parallel to a direction of a magnetic field generated by a current to be measured flowing in the current path to be measured, and are provided so that the directions of the magnetic fields generated by the current to be measured are applied in mutually opposite directions, and third and fourth magnetoelectric transducers having a main sensitivity axis being non-orthogonal to a direction of a magnetic field generated by the neighboring current while being orthogonal to the direction of the magnetic field generated by the current to be measured, and are provided so that the directions of the magnetic fields generated by the current to be measured are applied in mutually opposite directions.
Abstract:
An internal impedance of an electrical storage device is measured by using a signal of a frequency which ions in the electrical storage device are difficult to follow (e.g., a frequency equal to or higher than 10 kHz), and an internal temperature of the electrical storage device is calculated from a measured value of the internal impedance.
Abstract:
An electrical current sensor includes a magnetic detection element whose characteristics are changed by an inductive magnetic field from a current to be measured, a plurality of coils that are connected in series with each other and which are arranged in the vicinity of the magnetic detection element, and generates a canceling magnetic field for canceling the inductive magnetic field by a feedback current flowing in the coils, and a switch circuit that selects a coil electrically connected with an input terminal and/or an output terminal of the feedback current from the plurality of coils, and controls a coil for allowing the feedback current to flow.
Abstract:
A current sensor includes a magnetic sensor module including a plurality of magnetic sensor units connected in series. The magnetic sensor units each include a first magnetic sensor element and a second magnetic sensor element which have sensitivity axes oriented in opposite directions. A first terminal of the first magnetic sensor unit is connected to a first potential source. A third terminal of the first magnetic sensor unit is connected to a second potential source. A second terminal and a fourth terminal of the last magnetic sensor unit are connected to constitute a sensor output terminal. The first terminal of each of the magnetic sensor units excluding the first magnetic sensor unit is connected to the second terminal of the next magnetic sensor unit and the third terminal thereof is connected to the fourth terminal of the next magnetic sensor unit.
Abstract:
A current sensor includes a first current path, a second current path disposed parallel to the first current path, and a pair of first magnetic sensors. The first current path has a pair of main surfaces and includes a plate-shaped first region. The second current path has a pair of main surfaces and includes a plate-shaped second region. The first magnetic sensors are arranged on the respective main surfaces in the first region such that sensing axes of the first magnetic sensors are parallel to the respective main surfaces in the first region. The first magnetic sensors are configured to sense a magnetic field generated by a target current flowing through the first region. The second region is placed such that the main surfaces in the second region are perpendicular to the sensing axes of the first magnetic sensors.
Abstract:
An electrical storage device temperature-measuring method includes: measuring the real part of the internal impedance of an electrical storage device by using an alternating-current signal having a frequency at which the internal impedance or the real part of the internal impedance of the electrical storage device does not change according to the remaining capacity (SOC: state of charge) of the electrical storage device; and calculating the internal temperature of the electrical storage device from the measured value of the real part of the internal impedance.
Abstract:
A current sensor includes a folded-shaped current path including a pair of arm portions extending in parallel with each other, and a pair of magnetoelectric conversion elements provided so as to sandwich therebetween a symmetric axis passing between the pair of arm portions, the pair of magnetoelectric conversion elements being used for detecting magnetism caused by a current passing through the pair of arm portions, wherein a half-bridge circuit in which the pair of magnetoelectric conversion elements is series-connected and a signal is able to be extracted from a connection point between the pair of magnetoelectric conversion elements is formed, and sensitivity axes of the pair of magnetoelectric conversion elements are oriented in a same direction and sensitivity-influencing axes of the pair of magnetoelectric conversion elements are oriented in a same direction.
Abstract:
A current sensor includes a first support configured to include a cutout portion, a first magnetic detector element group configured to be provided in the first support, a second support configured to include a cutout portion, and a second magnetic detector element group configured to be provided in the second support. The cutout portion includes a supporting surface supporting a current line. In the current sensor, when the current line conducting therethrough a current to be measured is attached, the first support and the second support are displaced in the circumferential direction of the current line and fixed, and the current line is supported by supporting surfaces, in different positions in the axis line direction of the corresponding current line.
Abstract:
A current sensor includes a first conductor and a second conductor arranged so as to form current paths parallel to each other; a circuit board arranged such that a surface thereof is perpendicular to the current paths; and a first magnetoelectric transducer and a second magnetoelectric transducer arranged on the surface of the circuit board such that the first conductor is interposed therebetween. The first conductor, the second conductor, the first magnetoelectric transducer, and the second magnetoelectric transducer are located on a same plane.
Abstract:
An Fe-based amorphous alloy powder of the present invention has a composition represented by (Fe100-a-b-c-x-y-z-tNiaSnbCrcPxCyBzSit)100-αMα. In this composition, 0 at %≦a≦10 at %, 0 at %≦b≦3 at %, 0 at %≦c≦6 at %, 6.8 at %≦x≦10.8 at %, 2.2 at %≦y≦9.8 at %, 0 at %≦z≦4.2 at %, and 0 at %≦t≦3.9 at % hold, a metal element M is at least one selected from the group consisting of Ti, Al, Mn, Zr, Hf, V, Nb, Ta, Mo, and W, and the addition amount α of the metal element M satisfies 0.04 wt %≦α≦0.6 wt %. Accordingly, besides a decrease of a glass transition temperature (Tg), an excellent corrosion resistance and high magnetic characteristics can be obtained.
Abstract translation:本发明的Fe系非晶态合金粉末具有由(Fe100-a-b-c-x-y-z-tNiaSnbCrcPxCyBzSit)100-αMalpha表示的组成。 在该组合物中,0at%@ a @ 10 at%,0 at%@ b @ 3 at%,0 at%@ c @ 6 at%,6.8 at%@ x @ 10.8 at%,2.2 at%@ y @ 金属元素M为选自Ti,Al,Mn,Zr,Hf中的至少一种,金属元素M为选自Ti,Al,Mn,Zr,Hf, V,Nb,Ta,Mo和W,并且金属元素M的添加量α满足0.04wt%@α@ 0.6wt%。 因此,除了玻璃化转变温度(Tg)的降低之外,还可以获得优异的耐腐蚀性和高的磁特性。