Abstract:
A fluid injection device integrating a piezoelectric sensor, a fluid injection apparatus and a method for analyzing fluid content in a fluid injection device. The fluid injection device comprises a fluid injector and a piezoelectric sensor. The fluid injector comprises a plurality of fluid chambers formed in a substrate for receiving fluid. A structural layer is disposed on the substrate and the plurality of fluid chambers. At least one fluid actuator is disposed on the structural layer opposing each fluid chamber. A nozzle is adjacent to the at least one fluid actuator and connecting each fluid chamber through the structural layer. The piezoelectric sensor id disposed on the structural layer to analyze fluid content in each fluid chamber.
Abstract:
The invention discloses an integrated circuit package. The integrated circuit package comprises a substrate having a first surface and a second surface opposite thereto and a first hole passing through the substrate from the first surface to the second surface. A plurality of conductive lines is disposed on a portion of the second surface of the substrate. A semiconductor chip is disposed above the second surface of the substrate, wherein a chamber is formed between the semiconductor chip and the substrate. A plurality of bonding pads are disposed on a side of the semiconductor chip which is toward the second surface of the substrate, wherein at least one of the bonding pads are electrically connected to one of the plurality of conductive lines. A first heat dissipation layer is disposed in the first hole, and extends into the chamber. A method for fabricating the integrated circuit package is also provided.
Abstract:
The invention provides a fluid measuring apparatus, which includes a collector, a sensing circuit, and an electrochromic device electrically connected to the sensing circuit. When the concentration of a fluid flowing through the collector and between the sensing circuit varies, the color of the electrochromic device changes accordingly. Further, the electrochromic device includes an electrochromic material, and the sensing circuit includes a first electrode and a second electrode, wherein the first and the second electrodes are disposed in the collector and the electrochromic material is disposed on the first electrode. When the concentration of an electrolytic solution flowing between the first electrode and the second electrode varies, the color of the electrochromic material changes accordingly.
Abstract:
An optical tweezers controlling device including a light source, an objective lens and a focus adjusting unit is provided. The focus adjusting unit disposed between the light source and the objective lens includes a mirror set and a zoom lens set. The mirror set has at least a mirror. The mirror is rotatable such that after a light of the light source is projected to the mirror, the reflective direction of the light reflected from the mirror is changeable. The zoom lens set has at least a zoom lens disposed in accordance with the mirror. By rotating the mirror or changing the focal length of the zoom lens, the focusing location of the light changes on the focal plane of the objective lens or in the front or the rear of the focal plane.
Abstract:
Fluid injection devices comprise M sets of fluid injection units. Each fluid injection unit comprises N injectors separately connecting to a driver. A controller separately transmits a signal to the driver, thereby simultaneously driving a selected injector of each of the M sets of fluid injection units. A non-selected injector of each of the M sets of fluid injection units does not trigger bipolar junction transistors (BJTs).
Abstract:
A single transistor random access memory cell has an MOS well, a transfer gate of the transistor and a storage capacitor having a storage node in the well that becomes an inversion layer at a threshold voltage near zero. The inversion layer diffuses to an inversion region beneath the transfer gate when the transfer gate is turned on. For high speed operation, a doped region beneath the transfer gate becomes an inversion layer at a threshold voltage near zero. In this invention, a storage node junction is removed, which removes junction leakage and reduces subthreshold leakage current significantly.
Abstract:
A method and system for DRAM refresh wherein the refresh rate is proportional to the current leakage of one or more sampling cells. The sampling cells selected are representative of the nominal leakage condition of the DRAM array and track the DRAM cell leakage rates, which are dependent upon manufacturing process variations, application influences, voltage variations and the temperature of the system, both locally and globally. As the current leakage through the DRAM increases, the refresh cycle repetition frequency increases and accordingly decreases for low leakage conditions. By adjusting the refresh rate in the manner described by the invention disclosed herein, the semiconductor conserves power by reducing unnecessary refresh cycles, generates the required delay between cycles without undue power consumption and provides a cost effective means that does not require external settings and calibration to optimize the refresh rate for the variations heretofore mentioned.
Abstract:
A word line control device has a word line driver for deactivating and activating a word line to control access to a memory cell, and a voltage coupling device for coupling voltages to the word line driver.
Abstract:
Fluid injectors and methods of controlling injection quality for fluid injectors. The fluid injector comprises a fluid chamber for receiving fluid with a first layer thereon, at least one fluid actuator positioned on the first layer, a sensor for measuring the thickness of the first layer, a second layer disposed on the first layer covering the at least one fluid actuator and the sensor, and a nozzle adjacent to the fluid actuator and communicating with the fluid chamber through the second layer and the first layer. By measuring the thickness of the structural layer and comparing the thickness with a predetermined data bank, an optimized driving signal is provided to inject optimized droplet, thereby improving printing quality.
Abstract:
A method and system for DRAM refresh wherein the refresh rate is proportional to the current leakage of one or more sampling cells. The sampling cells selected are representative of the nominal leakage condition of the DRAM array and track the DRAM cell leakage rates, which are dependent upon manufacturing process variations, application influences, voltage variations and the temperature of the system, both locally and globally. As the current leakage through the DRAM increases, the refresh cycle repetition frequency increases and accordingly decreases for low leakage conditions. By adjusting the refresh rate in the manner described by the invention disclosed herein, the semiconductor conserves power by reducing unnecessary refresh cycles, generates the required delay between cycles without undue power consumption and provides a cost effective means that does not require external settings and calibration to optimize the refresh rate for the variations heretofore mentioned.