摘要:
The present disclosure addressed apparatus and methods for forming an annular isolator in a borehole after installation of production tubing. Annular seal means are carried in or on production tubing as it is run into a borehole. In conjunction with expansion of the tubing, the seal is deployed to form an annular isolator. An inflatable element carried on the tubing may be inflated with a fluid carried in the tubing and forced into the inflatable element during expansion of the tubing. Reactive chemicals may be carried in the tubing and injected into the annulus to react with each other and ambient fluids to increase in volume and harden into an annular seal. An elastomeric sleeve, ring or band carried on the tubing may be expanded into contact with a borehole wall and may have its radial dimension increased in conjunction with tubing expansion to form an annular isolator.
摘要:
In one embodiment, a method of treating a subterranean formation is provided comprising the steps of providing a gelled liquid hydrocarbon treatment fluid comprising a liquid hydrocarbon and a gelling agent that comprises a polyvalent metal salt of an organophosphonic acid ester or a polyvalent metal salt of an organophosphonic acid, and treating the subterranean formation with the gelled liquid hydrocarbon treatment fluid. The gelled liquid hydrocarbon treatment fluids are suitable for use in subterranean treatment operations, such as subterranean stimulation and sand control treatments like fracturing and gravel packing, that may be carried out in subterranean formations for the production of hydrocarbons. The compositions and methods also may be suitable, for example, to be used as plugging agents, well bore cleanup fluids, viscous sweep fluids, or insulating fluids to be used in associated methods.
摘要:
The present disclosure addressed apparatus and methods for forming an annular isolator in a borehole after installation of production tubing. Annular seal means are carried in or on production tubing as it is run into a borehole. In conjunction with expansion of the tubing, the seal is deployed to form an annular isolator. An inflatable element carried on the tubing may be inflated with a fluid carried in the tubing and forced into the inflatable element during expansion of the tubing. Reactive chemicals may be carried in the tubing and injected into the annulus to react with each other and ambient fluids to increase in volume and harden into an annular seal. An elastomeric sleeve, ring or band carried on the tubing may be expanded into contact with a borehole wall and may have its radial dimension increased in conjunction with tubing expansion to form an annular isolator.
摘要:
The present invention relates to servicing fluids for use in subterranean operations. More particularly, the present invention relates to improved servicing fluids comprising optimized hydrocarbon blends and methods of using such servicing fluids in subterranean formations. One embodiment of the preset invention provides a method of treating a subterranean formation comprising the steps of providing a servicing fluid comprising a hydrocarbon blend wherein the hydrocarbon blend comprises at least about 65% hydrocarbons having from 6 carbons (C6) to eleven carbons (C11); and placing the servicing fluid into the subterranean formation. Another embodiment of the present invention provides a subterranean servicing fluid comprising a hydrocarbon blend wherein the hydrocarbon blend comprises at least about 65% hydrocarbons having from 6 carbons (C6) to eleven carbons (C11).
摘要:
Improved metal corrosion inhibitors, acid compositions containing the inhibitors and methods of using the acid compositions are provided by the present invention. The metal corrosion inhibitors are basically comprised of one or more acetylenic alcohols and hexamethylenetetramine.
摘要:
Corrosion inhibiting compositions and methods for inhibiting the corrosion of metal surfaces by corrosive aqueous fluids are provided. In accordance with the invention, a corrosion inhibiting composition comprised of one or more aldehyde oligomers having the general formula are combined with the corrosive aqueous fluid.
摘要:
The present invention relates to improved methods and compositions for performing well completion or remedial procedures in subterranean zones having temperatures below about 70.degree. F. or above about 170.degree. F. The methods basically include the steps of introducing into the zone an aqueous solution of a polymerizable monomer, a polymerization initiator and a low temperature polymerization activator or a high temperature polymerization inhibitor. Thereafter, the polymerizable monomer is allowed to polymerize in the zone.
摘要:
The present invention relates to improved methods and compositions for performing well completion or remedial procedures in subterranean zones having temperatures below about 70.degree. F. The methods basically comprise the steps of introducing into the zone an aqueous solution of a polymerizable monomer, a polymerization initiator and an oxygen scavenger comprised of stannous chloride. Thereafter, the polymerizable monomer is allowed to polymerize in the zone. The stannous chloride scavenges oxygen without generating free radicals and causing premature polymerization.
摘要:
In an embodiment, a method is provided including the steps of: (A) introducing a well fluid comprising an electron-poor orthoester into a well; and (B) allowing or causing the electron-poor orthoester to hydrolyze to produce an acid and an alcohol in the well. In another embodiment, a water-based well fluid is provided, the well fluid including: (A) a continuous aqueous phase having a pH of a least 6; (B) an electron-poor orthoester; and (C) a viscosity-increasing agent.
摘要:
Methods relating to servicing fluids that comprise gelled liquefied petroleum gas or servicing fluids that comprise a conventional gelled hydrocarbon fluid with liquefied petroleum gas are provided. In one embodiment, the methods of the present invention comprise providing a LPG servicing fluid comprising LPG and a gelling agent; pressurizing the LPG servicing fluid with one or more high-pressure pumps; introducing proppant particulates into at least a portion of the LPG servicing fluid using one or more high pressure pumps; and introducing the LPG servicing fluid comprising proppant particulates into at least a portion of a subterranean formation at a rate and pressure sufficient to create or enhance at least one or more fractures therein. In one embodiment, a gelling agent may be metered into the LPG on-the-fly.