Abstract:
A waveguide including transmission areas which transmit an input optical signal. A coupling area is provided between the transmission areas and has a width narrower than a width of the transmission areas so that at least part of the optical signal transmitted through the transmission areas is branched to a neighboring optical member.
Abstract:
An image display apparatus is provided to improve display characteristics, the apparatus including a prism and a pixel section on one side of the prism. The pixel section includes a reflective electrode and dielectrics disposed at a predetermined distance from the reflective electrode. The dielectrics are in contact with the reflective electrode if voltage is applied, and the effective refractive index changes according to the image signal. The effective refractive index of the section of the reflective electrode in contact with the dielectrics changes, and accordingly, the reflectivity of the reflective electrode changes corresponding to the image signal. The pixel section is able to regulate the surface plasmon resonance by regulating the reflective electrode, and is able to display the black state using the surface plasmon resonance. The image display apparatus provides improved contrast ratio by preventing color leaks from arising in the black state, and thus, improve display characteristics.
Abstract:
An optical isolator using a photonic crystal. The optical isolator includes an input portion that in turn includes an input waveguide part and an input waveguide having a taper portion formed in the input waveguide part. An output portion includes an output waveguide part and an output waveguide formed in the output waveguide part continuously with the input waveguide. The output waveguide includes a backward directional optical signal shield surface having an inclination greater than the taper portion with respect to an optical signal transmission center axis. The optical isolator is operable to have an optical signal substantially transmitted in a forward direction from the input portion to the output portion and further operable to substantially not transmit the optical signal in a backward direction from the output portion to the input portion.
Abstract:
A phase-conjugate holographic data storage device capable of enhancing the characteristics of recording and reproducing data by using a focusing lens is provided. The holographic data storage device includes a focusing lens which focuses an object beam having data, a spatial light modulator which is located on the optical path of the object beam passing through the focusing lens and modulates the object beam, and a data recording medium which records an interference pattern generated by interference between a reference beam and the object beam passing through the spatial light modulator and converging into a focus. The focusing lens is a focusing lens having at least two different focuses. The holographic data storage device is capable of effectively reducing a dc term having a bad influence on the characteristics of recording data, minimizing the size of a data unit, that is, a spot, and thus enhancing the density of recording data.
Abstract:
Directional light guide plates, directional surface light sources, and three-dimensional (3D) image display apparatuses employing the directional surface light sources are provided. Each of the directional light guide plates includes a plurality of viewing zone separation units having a refractive index different from that of a light guide unit, for separating light into left and right viewing zones.
Abstract:
Provided are examples of light modulators and optical apparatuses that may include the light modulators. A light modulator may include a plasmonic nano-antenna and an element for changing plasmon resonance characteristics of the plasmonic nano-antenna. The plasmon resonance characteristics of the plasmonic nano-antenna may be changed due to a change in refractive index of the element, and thus light may be modulated.
Abstract:
A 2D/3D switchable backlight unit and an image display device employing the same are provided. The 2D/3D switchable backlight unit includes a light source, a light guide plate in which light emitted from the light source is total-internal-reflected, and a switch array comprising a plurality of switches that selectively contact a first surface of the light guide plate and emit light by frustrated total internal reflection inside the light guide plate. In 2D mode, each of the switches contacts the first surface of the light guide plate. In 3D mode, some of the switches contact the first surface of the light guide plate.
Abstract:
Provided is a transflective display apparatus including a color reflective plate disposed at a light emitting surface of a light guide plate, and a display panel disposed at another surface of the light emitting surface of the light guide plate so that light emitted from a light source is reflected by a color reflective plate through the light guide plate and travels toward the display panel.
Abstract:
A light guide plate for displaying a three-dimensional (3D) image, and a 3D image display apparatus employing the same. The light guide plate includes a transparent body formed in a flat panel shape, and for guiding light with total internal reflection in the transparent body; and a plurality of viewing zone separation units aligned inside the transparent body. Light incident on two side surfaces of the light guide plate is separated into different viewing zones by reflective surfaces of the viewing zone separation units.
Abstract:
Disclosed are a method for fabricating a quantum dot. The method includes the steps of (a) preparing a compound semiconductor layer including a quantum well structure formed by sequentially stacking a first barrier layer, a well layer and a second barrier layer; (b) forming a dielectric thin film pattern including a first dielectric thin film having a thermal expansion coefficient higher than a thermal expansion coefficient of the second barrier layer and a second dielectric thin film having a thermal expansion coefficient lower than the thermal expansion coefficient of the second barrier layer on the second barrier layer; and (c) heat-treating the compound semiconductor layer formed thereon with the dielectric thin film pattern to cause an intermixing between elements of the well layer and elements of the barrier layers at a region of the compound semiconductor layer under the second dielectric thin film.