Abstract:
A regulated power supply having power factor correction control includes a multi-vector error amplifier. The multi-vector error amplifier provides an error signal that is used to regulate a switching mechanism of the power supply. The multi-vector error amplifier acts to provide a low distortion error signal during steady-state operation, while responding rapidly and smoothly to sudden load changes.
Abstract:
A modulator of a PWM controller is provided for saving power and reducing acoustic noise in the light load and no load conditions. The maximum on-time is kept as a constant and a bias current of the oscillator in the PWM controller is moderated to achieve the off-time modulation. The bias current is a function of the supply voltage and the feedback voltage, which is derived from a voltage feedback loop. A threshold voltage defines the level of the light load. A limit voltage defines the low level of the supply voltage. A bias current synthesizer generates the bias current. Reducing the bias current increases the off-time of the switching period. Once the feedback voltage is decreased lower than the threshold voltage, the bias current is reduced linearly and the off-time of the switching period is increased gradually. When the supply voltage is lower than the limit voltage, the bias current increases and determines a maximum off-time of the switching period. Keeping the maximum on-time as a constant and increasing the switching period by only increasing the off-time prevents magnetic components, such as inductors and transformers, from being saturated. Furthermore, a control circuit disables the oscillator as the PWM frequency may fall into the audio band, therefore the acoustic noise can be greatly reduced in the light load and no load conditions.
Abstract:
Incorporating the PWM function with the power saving means develops the PWM controller in which the switching frequency is decreased in response to the decrease of the load. Further, the current-driven design minimizes the circuitry and reduces the cost of the PWM controller. Since most of the control signals are operated in current mode, the die size of integrated circuit of the PWM controller is greatly reduced. An off-time modulator is provided for power saving in which the discharge current of the oscillator is modulated. Keeping the maximum on-time of the PWM signal as a constant and increasing the off-time of the PWM signal extends the switching period in light load conditions. The off-time modulation is the function of a feedback current, which is derived from the feedback loop. An array of current operation is designed to generate the feedback voltage for the PWM control and meanwhile produces a modulated discharge current for power saving. A minimum discharge current is limited to prevent the switching frequency from flowing into the audio-band. Moreover, the minimum discharge current is switched on/off in response to the state of the supply voltage in which the minimum discharge current is disabled when the supply voltage is high, and enabled once the supply voltage is lower than a threshold voltage; thereby preventing insufficient power from being supplied from the auxiliary bias winding for the PWM controller.
Abstract:
A pulse width modulated soft-switching power converter, having a pair of main switches and a pair of auxiliary switches coupled to the primary winding of the transformer. The main switches and auxiliary switches intermittently conduct an input voltage source to the primary winding to operate the soft-switching power converter in four operation stages in each switching cycle. The main switches conduct the input voltage source to the transformer in a first operation stage. In a second operation stage, the conduction is cut off. The transformer operates as an inductor with the auxiliary switches switched on under zero-voltage or zero-current switching mode in a third operation stage. In the fourth operation stage, the auxiliary switches are switched off, whereby the flyback energy achieves the zero-voltage transition. A zero-voltage-detection is employed to optimize the zero-voltage switching. The switching frequency is decreased in response to the decrease of the load. Furthermore, the auxiliary switching is restricted in accordance with the decrease of the load. Therefore reducing the power consumption in the light load and no load conditions.
Abstract:
A PWM controller has a line voltage input that allows using an input resistor for both start-up and power-limit compensation, thus saving the power consumption, easing the PCB layout, and shrinking the power supply size. In the integrated circuit, a mirrored-resistor used for the power limit compensation is composed of a mirror MOSFET, which is associated with an op amplifier, a constant voltage and a constant current to provide a precise resistance. Thus, by properly selecting the value of the input resistor, an identical output power limit for low line and high line voltage input can be achieved.
Abstract:
A power supply supervisor having a line voltage detector is used to monitor a power supply. A peak detector detects the line voltage by measuring the PWM switching signal in the secondary of the transformer. A logic circuit couples to the peak detector and the under-voltage detector, etc. to generate a power good (PG) signal when the power supply outputs meet the specifications. The logic circuit outputs a FAIL signal to turn off the power supply when an abnormal situation, such as over-voltage, occurs. Furthermore, when AC power is lost or turned off, the logic circuit detects a low line voltage and generates a power-down-warning PG signal before the output voltages are disabled. When an abnormal situation occurs before the low line voltage is detected, the logic circuit latches the power supply in a power off state. If the abnormal situation occurs after the low line voltage is detected, the logic circuit turns off the power outputs, but disables the latch function. In the meantime, a time delay circuit is applied to postpone the power off status, in which the time delay limits the duty cycle of power outputs and protects the power supply from over-stress damage.
Abstract:
An analog to digital video converter is made of a differential correlated double sampling (DCDS) module, a DC bias circuit, an adjustment module and an analog-to-digital converter. The DCDS module samples a red, a green, and a blue analog signal respectively with a delay time, and then selects one of the sampled signals for outputting. The DC bias circuit is connected to the DCDS module for performing an analog addition to the output signal of the DCDS module. The adjustment module converts the digital adjustment data to an analog adjustable reference voltage. The analog-to-digital converter is connected to the output of the DC bias circuit and the adjustment module. By referring the adjustable reference voltage, the analog-to-digital converter converts the analog input signal to a digital output signal. Therefore, the analog input signal is equivalently adjusted by scaling the adjustable reference voltage.