Abstract:
In an apparatus for displaying a three-dimensional image, sub-pixels having color components are arranged in a longitudinal direction and in a lateral direction in a matrix form, in a display section for displaying a flat image, and a light ray control element is disposed so as to be opposed to the display section. In the light ray control element, linear optical openings extending in a vertical direction are arranged in the lateral direction. A sum of opening area lengths of opening areas of a plurality of sub-pixels adjacent to each other in a horizontal direction is varied in a single row, and the sum thereof in a plurality of rows becomes constant. Further, an arrangement of the sub-pixels is a color arrangement of a mosaic arrangement or a lateral stripe arrangement.
Abstract:
It is made possible to satisfy such a condition that moire or color moire is suppressed and a fast image processing is made easy and such a condition that sufficient image quality can be obtained both at a flat image display time and at a stereoscopic image display time simultaneously. A vertical period of pixel rows having the pixels arranged in one row in a lateral direction is three times a lateral period of the pixels, the pixels developing red, green and blue are alternately arranged in a lateral direction in the same row, the pixels in one row of two rows adjacent in a vertical direction are arranged such that lateral positions thereof are shifted to the pixels in the other row by 1/2 of the lateral period of the pixels, the pixels in rows adjacent in the same column through one row interposed therebetween are the pixels developing different colors of red, green and blue, and a pitch of the elemental images is equal to a width of 18n (n=1, 2, 3 . . . ) pieces of the pixels, and a lateral pitch of the beam control element is smaller than the width of the 18n pieces of the pixels.
Abstract:
In a II system display apparatus, in a normal display mode, a parallax component image is divided into pieces corresponding to respective columns for a parallax interleaved image. The component image is obtained by subjecting a subject to perspective projection in a vertical direction and to orthographic projection in a horizontal direction. In a compressed and emphasized display mode, the component image is divided into pieces corresponding to respective columns. The component image is obtained by subjecting the subject to perspective projection in both vertical and horizontal directions. In a multiview compatible mode, the component image is divided into pieces corresponding to respective columns so that the same piece is provided for a plurality of adjacent columns. The component image is obtained by subjecting the subject to perspective projection in both vertical and horizontal directions.
Abstract:
A three-dimensional display apparatus is provided with an optical element including optical apertures arranged opposite a display module and in association with the parallax images. The optical apertures cause the parallax images to be displayed in a near-side region closer to an observer, while causing a three-dimensional image to be displayed in a far-side region located opposite the observer with respect to the display module. When a smooth three-dimensional image is to be displayed in the near-side region, the optical gap between the optical element and the display surface is set longer than a reference distance depending on the position of the three-dimensional image. In order to display a smooth three-dimensional image in the far-side region, the observer sets the optical gap shorter than the reference distance depending on the position of the three-dimensional image.
Abstract:
An apparatus includes a stereoscopic display region calculator calculating a stereoscopic display region to reproduce a three-dimensional positional relationship in image data displayed on a stereoscopic display device, based on two-dimensional or three-dimensional image data, a position of a target of regard of a virtual camera set in processing of rendering the image data, and orientations of the light beams output from the stereoscopic display device. The apparatus also includes an image processor performing image processing on image data outside a region representing the outside of the stereoscopic display region calculated by the stereoscopic display region calculator. The image processing is different from image processing on image data inside a region representing the inside of the stereoscopic display region. The apparatus also includes an image generator generating stereoscopic display image data from the two-dimensional or three-dimensional image data after processed by the image processor.
Abstract:
A first polarizer transmits incident light of a first polarized direction and absorbs incident light of a polarized direction different from the first polarized direction. A birefringent film layer rotates a polarized direction of light of a predetermined wavelength to a second polarized direction different from the first polarized direction in a light transmitted through the first polarizer. A second polarizer transmits light of the first polarized direction and reflects a light of the second polarized direction in a light transmitted through the birefringent film layer. A substrate absorbs light transmitted through the second polarizer.
Abstract:
An image display method including dividing an original image for one frame period into a plurality of subfield images, arranging the subfield images in a direction of a time axis in an order of brightness of the subfield images, and displaying the arranged subfield images in the order of the brightness.
Abstract:
A display device comprises a display element for displaying luminous images corresponding to color information on a second face of a screen; a polarization converting sheet which is disposed on the screen so that light irradiated from the screen enters and transmits selectively light having a first mode of polarization; and a liquid crystal color shutter which is disposed on the polarization converting sheet and transmits selectively light having the first mode of polarization so as to output as light of at least one color of primary colors corresponding to the color information. A display device may be an achromatic CRT. Thereby, a display device bright and large in its display screen can be realized with a simple constitution.
Abstract:
A stereoscopic display apparatus includes a display having pixels arrayed in a longitudinal direction and a lateral direction to form a matrix, each pixel including sub-pixels with color components, and a control element opposed to the display and having linear openings extending in the longitudinal direction and arrayed in the lateral direction. The openings of any two sub-pixels adjacent in the lateral direction always overlap regardless of a position in the lateral direction. The sum of the longitudinal components of the opening ratios of s adjacent in the lateral direction is constant.
Abstract:
Mediums that are arranged opposite to an elemental-image display unit, that form two lens arrays having different principal planes together with substrates, and that switches a polarization direction of incident light corresponding to applied voltage, thereby making lens effect of either one of the lens arrays effective are included. By controlling the polarization direction synchronizing with a display timing of images to be displayed on the elemental-image display unit, the lens array to be effective is switched at each display timing, and images having different near or far direction are alternately displayed on the elemental-image display unit.