Abstract:
A stereoscopic display device of an embodiment includes a display device having pixels developing either one color of red, green and blue. A vertical period of pixel rows comprising the pixels arranged in one row in a lateral direction is three times a lateral period of the pixels, the pixels developing red, green and blue are alternately arranged in a lateral direction in the same row, the pixels in one row of two rows adjacent in a vertical direction are arranged such that lateral positions thereof are shifted to the pixels in the other row by ½ of the lateral period of the pixels, the pixels in rows adjacent in the same column through one row interposed therebetween are the pixels developing different colors of red, green and blue, and an average value of pitches of the elemental images is larger than a width of pieces of the pixels.
Abstract:
A three-dimensional image display apparatus includes an image display configured to output image light which arrays a plurality of pixels and has polarization, a lens array arranged in front of the image display, configured to function as lens at light which has a 1st polarization direction, and not to function as lens at light which has a 2nd polarization direction differed from the 1st polarization direction, and a birefringent phase modulator placed between the image display and the lens array and configured to rotate a polarization plane of the image light.
Abstract:
A three-dimensional image display device includes a two-dimensional image display screen having color filters in which each color is disposed on sub-pixels obtained by dividing one pixel in a vertical direction and same color is disposed on each column of sub-pixels; an optical plate having an exit pupil, the exit pupil being provided for making a viewing zone different for each pixel and having a longitudinal axis disposed as to be inclined from a vertical direction of the two-dimensional image display screen at a degree (θ) (θ≠0, −45°
Abstract:
The embodiment is to make it possible to increase a resolution obtained when a character or a two-dimensional image is displayed. A stereoscopic image display device is provided with a two-dimensional image display device having a plurality of pixels arranged within a display plane; and a ray control section which is provided in front of or behind the display plane and has a plurality of opening portions or a plurality of lenses arranged side by side, for controlling rays from the pixels, a distance z from the ray control section to a two-dimensional character or a two-dimensional image display position satisfying relationships of 0
Abstract:
Mediums that are arranged opposite to an elemental-image display unit, that form two lens arrays having different principal planes together with substrates, and that switches a polarization direction of incident light corresponding to applied voltage, thereby making lens effect of either one of the lens arrays effective are included. By controlling the polarization direction synchronizing with a display timing of images to be displayed on the elemental-image display unit, the lens array to be effective is switched at each display timing, and images having different near or far direction are alternately displayed on the elemental-image display unit.
Abstract:
A projection type screen comprises a reflection surface array and a lenticular sheet. In the reflection surface array, a plurality of reflection surfaces is located along a horizontal direction. Each reflection surface has a mirror reflectivity of which section along the horizontal direction is quadratic curve shape. The lenticular sheet is located at an incident side of a projection light for the reflection surface array. The lenticular sheet has diffusivity along a vertical direction.
Abstract:
A lens array includes a glass substrate, a lens array layer, and a flat layer. The lens array layer and the flat layer are made of a resin material thinner than the glass substrate and have generally the same thickness. The lens array layer and the flat layer are adhered to the two sides of the glass substrate through adhesive layers to oppose each other through the glass substrate.
Abstract:
A display input device comprises a display unit having a flexibility; and a first form change detection unit having a flexibility. The first form change detection unit is able to detect a deformation ascribed to the flexibility as a change in a electrical property. A display input system further comprises a display driving unit that supplies a display signal to the display unit and a signal judging unit that judges a input data based on the change in a electrical property in the first form change detection unit. The input of a first data can be performed by adding the deformation to the display input device.
Abstract:
An image display system produces a color image by arranging a color shutter capable of time-divisionally switching a plurality of colors to be displayed, in front of a monochrome image display. This image display system comprises: a self-luminous image display part for time-divisionally displaying monochrome images corresponding to three primary colors; and a color display part for time-divisionally coloring and outputting the monochrome images which formed on the side of the light outgoing surface of the self-luminous image display part and which correspond to the three primary colors. The color display part further comprises: a liquid crystal cell driven by carrying out an optical switching on the basis of the inversion between positive and negative polarities; a transparent electrode formed by dividing the liquid crystal cell into a plurality of parts; and a liquid crystal color shutter capable of optionally setting display colors for a plurality of display regions by means of the transparent electrode, the liquid crystal color shutter displaying different display colors for at least two display regions in an optional time in a driving condition.
Abstract:
In a II system display apparatus, in a normal display mode, a parallax component image is divided into pieces corresponding to respective columns for a parallax interleaved image. The component image is obtained by subjecting a subject to perspective projection in a vertical direction and to orthographic projection in a horizontal direction. In a compressed and emphasized display mode, the component image is divided into pieces corresponding to respective columns. The component image is obtained by subjecting the subject to perspective projection in both vertical and horizontal directions. In a multiview compatible mode, the component image is divided into pieces corresponding to respective columns so that the same piece is provided for a plurality of adjacent columns. The component image is obtained by subjecting the subject to perspective projection in both vertical and horizontal directions.