Abstract:
The current invention involves a desorption corona beam ionization source/device for analyzing samples under atmospheric pressure without sample pretreatment. It includes a gas source, a gas flow tube, a gas flow heater, a metal tube, a DC power supply and a sample support/holder for placing the samples. A visible corona beam is formed at a sharply pointed tip at the exit of the metal tube when a stream of inert gas flows through the metal tube that is applied with a high DC voltage. The gas is heated for desorbing the analyte from solid samples and the desorbed species are ionized by the energized particles embedded in the corona beam. The ions formed are then transferred through an adjacent inlet into a mass spectrometer or other devices capable of analyzing ions. Visibility of the corona beam in the current invention greatly facilitates pinpointing a sampling area on the analyte and also makes profiling of sample surfaces possible.
Abstract:
A device for separating, enriching and detecting ions comprises: a gas tube, in which a carrier gas flows at a uniform rate; an ion source; multiple electrodes provided in the gas tube and applied with electric voltages respectively, so that at least an electric field is produced along the axis of the gas tube; an ion detector; and an ion extraction channel, by which specific enriched ions will be guided across the side wall of the gas tube toward the ion detector and be analyzed. The device enriches ions utilizing the following characteristic: compound ions with specific ion mobility maintain a dynamic balance for a period of time in a flow field under the combination of a carrier gas and a suitable electrical field against the direction of the carrier gas. Simultaneously, multiple compound particles with different ion motilities can be separated and enriched at positions with different electrical field intensities in a flow field in the same manner. The device also comprises synchronously export latitudinally enriched ions at different positions in a flow field, and performs later mass analysis using a mass spectrometer.
Abstract:
A method and computer program product of incrementally visualizing graphical extensible models for legacy software applications via a user interface are provided. A graph of nodes and connections showing only the highest level of details are presented. Each node that contains additional, lower level, details is shown with an expansion icon that may be selected to see additional levels of detail for the node. When selected, the user interface drills down to show the next lowest level of details for that artifact within a visual boundary of the original artifact that was expanded. Because of the nested, hierarchical nature of the model, relationships between higher level artifacts can be inferred from explicit relationships between lower level artifacts. When the node is expanded, any connections that previously connected to the higher level artifact are updated to connect to the appropriate artifact in the lower level details.
Abstract:
A method to perform timing analysis for a complex logic cell with distorted input waveform and coupled load networks is presented. Timing arc based models are used in conjunction with CCB based current models of portions of the logic cell to compute the output signal of the logic cell. For example, an intermediary signal is generated using a first timing arc based model and an equivalent coupled network output signal is generated using a channel connected block (CCB) based current model.
Abstract:
A method for implementing a graphical modeling tool in a web-based environment is disclosed herein. In one embodiment, such a method may include enabling a user to import, into a web-based environment, a domain meta model comprising a number of meta model elements. The method may further enable the user to associate the meta model elements with graphical representations in the web-based environment, thereby allowing the user to create palette elements. The user may then assemble the palette elements on a canvas to create a diagram. This diagram may be converted into an instance of the domain meta model. This instance may be validated for conformance with the rules and constraints associated with the domain meta model. A corresponding apparatus and computer program product are also disclosed and claimed herein.
Abstract:
A heat dissipation device includes a heat conductive member, a fin unit coupled to a bottom surface of the heat conductive member and a plurality of LED modules attached to a top surface of the heat conductive member. The heat conductive member consists of a first plate, a second plate parallel to the first plate and a plurality of posts sandwiched between the first and second plates. Peripheries of the first and second plate are in a hermetical conjunction with each other to form a chamber containing a phase-changeable working fluid therein. The first and second plates therein define a plurality of through orifices. The posts each define therein a screwed orifice which is in alignment with corresponding through orifices of the first and second plates respectively and threadedly receives a screw extending through the LED module.
Abstract:
A quadrupole ion trap includes a switch 3 for switching a trapping voltage between discrete voltage levels VH, VL. This creates a digital trapping field for trapping precursor ions and product ions in a trapping region of the ion trap. A gating voltage is applied to a gate electrode 12 to control injection of source electrons into the ion trap. Application of the gating voltage is synchronised with the switching so that electrons are injected into the trapping region while the trapping voltage is at a selected one of the voltage levels and can reach the trapping region with a kinetic energy suitable for electron capture dissociation to take place.
Abstract:
A miniature liquid cooling device includes a casing (10) having a base (16) attached on a heat-generating electronic component for absorbing heat generated by the electronic component. The casing includes an outer wall (12) mounted on the base and a top cover (15) mounted on the outer wall. A receiving space is enclosed by the casing. A heat-absorbing member (40) is attached on the base and received in the receiving space for exchanging heat with liquid in the casing. An impeller (21) is rotatably mounted in the receiving space and above the heat-absorbing member. When the impeller rotates the liquid is driven to flow into the liquid cooling device via a liquid inlet (122) and then flow through the heat-absorbing member and finally flow out of the liquid cooling device via a liquid outlet (124).
Abstract:
A fastening device is used for connecting a first and a second fan together. The two fans each have an upper flange and a lower flange and a cylindrical body interconnecting the upper flange and the lower flange. The fastening device includes a plate-shaped pad and two resilient portions respectively extending perpendicularly from two opposite sides of the pad. The two resilient portions respectively extend through the lower flange of the first fan and the upper flange of the second fan, pressing against the first fan and the second fan toward each other. The pad is sandwiched between the lower flange of the first fan and the upper flange of the second fan.
Abstract:
An LED assembly for an LED lamp includes a replaceable bracket and a plurality of LED units mounted on the bracket. The bracket includes a frame and a plurality of mutually crossed beams interconnected in the frame to define a plurality of square openings. Each LED unit includes a printed circuit board, a heat sink secured below the printed circuit board and fixed on the bracket, and a plurality of LEDs mounted on the printed circuit board to be exposed in the openings in the bracket. The bracket can have different configuration so that light beams generated by the LEDs are parallel to each other, in a convergent manner or in a divergent manner.