Abstract:
The present invention provides, in certain aspects, a natural killer (NK) cell that expresses all or a functional portion of interleukin-15 (IL-15), and methods for producing such cells. The invention further provides methods of using a natural killer (NK) cell that expresses all or a functional portion of interleukin-15 (IL-15) to treat cancer in a subject or to enhance expansion and/or survival of NK cells.
Abstract:
Methods for regulating T cell function in a subject, particularly regulatory T cell activity are provided. Methods of the invention include administering to a subject a therapeutically effective amount of an Interleukin 35-specific binding agent, such as an antibody or small molecule inhibitor. The invention further provides methods for enhancing the immunogenicity of a vaccine or overcoming a suppressed immune response to a vaccine in a subject, including administering to the subject a therapeutically effective amount of an IL35-specific binding agent and administering to the subject a vaccine. In one embodiment the vaccine is a cancer vaccine.
Abstract:
The invention is directed to the use of Retinoid X Receptor-gamma (RXR-gamma) agonists and Retinoid X Receptor-alpha (RXR-alpha) antagonists in treatment of cancer.
Abstract:
Compositions and methods for the diagnosis and treatment of a cancer that is resistant to at least one anaplastic lymphoma kinase (ALK) kinase inhibitor are provided herein. The present invention is based on the discovery of mutations within ALK that confer resistance to at least one ALK kinase inhibitor. Polynucleotides and polypeptides having at least one ALK inhibitor resistance mutation are provided and find use in methods and compositions useful in the diagnosis, prognosis, and/or treatment of diseases associated with aberrant ALK activity, more particularly, those that are resistant to at least one ALK kinase inhibitors. Methods and compositions are also provided for the identification of agents that can inhibit the kinase activity and/or reduce the expression level of the ALK resistance mutants.
Abstract:
The invention provides methods for overcoming glucocorticoid resistance of cancers by inhibition of CASP1. Also disclosed are diagnostic methods for determining glucocorticoid resistance potential by measuring expression level or promoter methylation status of CASP1 gene and/or NLRP3 gene.
Abstract:
Compositions and methods for preventing and treating pneumococcal infections are provided. Compositions include novel polypeptides comprising an amino acid sequence corresponding to the R21 or R22 domain of CbpA or a consensus sequence of one of these domains, and variants and fragments thereof, wherein the polypeptide is stabilized in a desired conformation, particularly a loop conformation. The polypeptides of the invention may be engineered to comprise a first and a second cysteine residue, thereby resulting in the formation of a disulfide bond that stabilizes the polypeptide in the desired conformation. Alternatively, a polypeptide of the invention may be modified to create a synthetic linkage between a first and second amino acid residue present within the polypeptide, wherein the synthetic linkage stabilizes the polypeptide in the desired conformation. The polypeptides of the invention may further comprise an amino acid sequence for a T cell epitope. Compositions further include isolated nucleic acid molecules that encode the polypeptides of the invention, immunogenic compositions and vaccines comprising the disclosed polypeptides, and antibodies specific for these polypeptides.
Abstract:
Provided herein are methods for a novel combination therapy for treating a glutamine-addicted cancer in a subject in need thereof, which comprises the administration of a glutaminase antagonist and a pro-apoptotic compound. Specific glutaminase antagonists and pro-apoptotic compounds are provided. In some embodiments, the glutaminase antagonist is 6-diazo-5-oxo-1-norleucine (DON) and the pro-apoptotic compound is a Bcl-2 family member antagonist. In some embodiments, the pro-apoptotic compound is obatoclax mesylate, navitoclax, or fenretinide. In some embodiments, the glutamine-addicted cancer is a cancer in which Myc is deregulated. In some embodiments, the cancer is a pediatric cancer.
Abstract:
The invention provides a chimeric receptor comprising NKG2D, DAP10 and CD3 zeta. Also disclosed is a composition comprising this chimeric receptor and methods for making and using it to enhance the cytotoxicity and antitumor capacity of NK cells. The invention also encompasses methods for the use of NKG2D-DAP10-CD3 zeta polypeptides, vectors and cells in methods for treating cancer and other proliferative disorders, as well as infectious diseases.
Abstract:
The present invention relates, in general, to attenuated swine influenza viruses having an impaired ability to antagonize the cellular interferon (IFN) response, and the use of such attenuated viruses in vaccine and pharmaceutical formulations. In particular, the invention relates to attenuated swine influenza viruses having modifications to a swine NS1 gene that diminish or eliminate the ability of the NS1 gene product to antagonize the cellular IFN response. These viruses replicate in vivo, but demonstrate decreased replication, virulence and increased attenuation, and therefore are well suited for use in live virus vaccines, and pharmaceutical formulations.
Abstract:
Mammals with cancer are treated with an antibody which specifically binds to CD223 protein and inhibits negative T cell regulatory function of CD223. The mammal may be a human. The antibody may be a monoclonal antibody. The amount of the antibody administered may be sufficient to enhance an immune T cell response to the cancer.