Abstract:
Disclosed is a method for forming an organic thin film using a good solvent and a non-solvent to promote crystallization of an organic material. The method may enable the formation of a dense, uniform, highly ordered organic thin film by a wet process in a simple and an economical manner. Therefore, the organic thin film may be used as a gate insulating layer or a semiconductor layer to fabricate an organic electronic device having improved electrical properties, e.g., increased charge carrier mobility. Further disclosed are an organic thin film formed by the method and an organic electronic device including the organic thin film.
Abstract:
Disclosed is an organic thin film transistor including a phosphate-based self-assembled monolayer and a method of manufacturing the same. Example embodiments relate to an organic thin film transistor, which may include a single bond type phosphate-based self-assembled monolayer without intermolecular cross-linking, between source/drain electrodes and an organic semiconductor layer, thus exhibiting improved electrical properties, e.g., increased charge mobility, and to a method of manufacturing the organic thin film transistor.
Abstract:
Disclosed is an organic electronic device, in which a semiconductor layer and source/drain electrodes may be formed from materials of the same type, suitable for a room-temperature wet process, and thus have surface properties similar to each other, thereby decreasing contact resistance between the semiconductor layer and the source/drain electrodes. The materials for formation of the semiconductor layer and source/drain electrodes may be organic semiconductor type materials obtained by adding carbon-based nanoparticles to organic semiconductor materials in predetermined or given amounts. As such, the conductivity of a semiconductor or conductor may vary depending on the amount of carbon-based nanoparticles.
Abstract:
Disclosed are methods for forming electrodes for organic electronic devices which allow for the use of an improved range of conductive materials for forming source/drain electrodes. The disclosed methods also allow for the use of different conductive materials for forming data lines and source/drain electrodes during the fabrication of organic electronic devices. Organic electronic devices manufactured according to the methods may provide advantages over conventional methods including, for example, improved patterning and increased accuracy in the formation of electrodes for organic electronic devices. Organic electronic devices fabricated according to the disclosed method are expected to be useful in display devices and electronic displays.
Abstract:
A noise elimination circuit which can eliminate all noise of a reset signal of a microprocessor or an input signal effective in a specific logic level comprises: a ring oscillator unit for receiving first and second signals and generating a pulse signal according to the first signal, and stopping generation of the pulse signal when the first and the second signals have a first potential level; and a frequency division unit for receiving an output signal of the ring oscillator unit and then, N times frequency-dividing to generate the signal to the second signal, and being reset by the first signal.
Abstract:
As stated earlier, the technical purpose of the present invention is to solve inconvenience in use and installation of the AC motor with a controller, and to provide the AC motor available for mass production at a low cost by installing an airtight and compact controller within the case of the AC motor and by setting the sensing wheel in one part of the driving shaft making it possible for the rotative speed primary means integrated to the said controller to sense the driving speed.
Abstract:
An analog-to-digital converter includes a sample and hold circuit for sampling and holding an input analog signal and outputting an analog voltage, a selection code generator for generating a selection code corresponding to an operation mode for a number of conversion bits and a number of samples, a decoder for generating an enable signal corresponding to the selection code, a comparator for comparing an external voltage with the analog voltage and outputting a digital value, a conversion data register for storing the digital value and outputting a final digital value, a digital-to-analog converter for outputting the external voltage by inputting the digital value and a reference voltage stored in the ADR, a multiplexer for selecting a signal path for the operation mode selected by the selection code generator, a shift register for determining a number of registers for the operation mode selected by the selection code generator, a counter for counting a number of shifts of the shift register and determining the signal path of the multiplexer, an output detector for detecting a conversion value of a lowest bit of the conversion data register and outputting a conversion end signal to the conversion data register, and a controller for controlling operation of the A/D converter by outputting a clock signal in response to the selection code and the conversion end signal.
Abstract:
A video signal processor for a radar system includes A/D converters for receiving radar signals to digitize the signals at a predetermined speed, direct averagers for writing signals included in the predetermined size of azimuth among the digitized radar signals into different memories according to the azimuths and for averaging signals corresponding to the same range gates, cell average processors having a microcomputer and a RAM for cell-averaging the output of the direct averagers with the processing program down-loaded from a main controller, an extractor for extracting only target data from the output of one of the cell average processors, a radar video processor controller for generating various control signals, and a communication processor for performing the data transmission and reception between the main controller and the radar video processor controller of the radar system.
Abstract:
A light emitting device may include a first electrode on a substrate, a first emission layer on the first electrode, a buffer layer on the first emission layer, a middle electrode on the buffer layer, a second emission layer on the middle electrode, and a second electrode on the second emission layer. The buffer layer may include a material selected from the group consisting of a metal oxide, a polyelectrolyte, and a combination thereof. The first emission layer, buffer layer, middle electrode, and second emission layer may be fabricated using a wet process.