Abstract:
A flat panel display apparatus including: a mother substrate; a display unit provided on the mother substrate; an opposing mother substrate facing the mother substrate such that the display unit is interposed between the mother substrate and the opposing mother substrate; a sealing member provided between the mother substrate and the opposing mother substrate to contact the substrate and/or the opposing mother substrate and arranged outside or along a periphery of the display unit; and an auxiliary layer provided between the mother substrate and the opposing mother substrate to prevent a warpage of the mother substrate and/or the opposing mother substrate.
Abstract:
Provided are an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes a substrate; an sealing substrate facing the substrate, an organic light emitting unit disposed between the substrate and the sealing substrate and having a plurality of organic light emitting devices emitting light, and a plurality of grooves formed in a light extracting surface of the organic light emitting display device through which the light is emitted to the outside. In one embodiment, the grooves are formed on the sealing substrate, and in another embodiment, the grooves are formed on the substrate.
Abstract:
An organic electroluminescent device and a method of preparing the same are provided. The organic electroluminescent device includes a sealing layer which is formed on a sealing substrate, and which includes a cohesion layer, a transparent polymer layer, and a transparent moisture absorption layer. Since the transparent moisture absorption layer of the organic electroluminescent device is provided to a sealing substrate using an attaching method, the organic electroluminescent device has an improved life span property due to a firm sealed structure and better light extraction efficiency due to the transparent moisture absorption layer below the sealing substrate.
Abstract:
A sealing filler for an organic light emitting device display includes a siloxane polymer having a surface tension of about 20 dyn/cm or less. The siloxane polymer may be represented by where each of R1 to R10 is independently a non-polar substituent, and n ranges from 20 to 50.
Abstract:
A flat panel display and method of fabricating the same are disclosed. The flat panel display includes a first substrate having a pixel region; a light-emitting element located on the pixel region; a second substrate located opposite the first substrate; and a sealant located between the first and second substrates to cover the light-emitting element. At least one of the first and second substrates includes a groove formed around at least a portion of the circumference surrounding the pixel region. When the first and second substrates are pressed together with the sealant between them, the sealant spreads, covering the light-emitting element, and at least partially filling the groove.
Abstract:
A laser irradiation apparatus for bonding a first substrate to a second substrate using bonding members and a method of manufacturing a display device using the same, the laser irradiation apparatus including a stage on which the first substrate is mounted, bonding members disposed between the first substrate and the second substrate, a laser oscillating member configured to irradiate a laser beam onto the bonding members, and a temperature maintaining member co-operating with the first substrate to maintain a temperature of the first substrate at a predetermined temperature.
Abstract:
A method of manufacturing an organic electroluminescence device whereby an encapsulating layer is formed by coating an encapsulating substrate with an encapsulating layer-forming composition and thermally processing the encapsulating substrate. A plasma treatment is performed on the encapsulating substrate having the encapsulating layer. A sealant is applied to at least one of the plasma treated encapsulating substrate and a substrate on which an organic electroluminescent unit including a first electrode, an organic layer, and a second electrode, which are sequentially stacked, is deposited. The sealing substrate and the substrate on which the organic electroluminescent unit is deposited are combined. Contaminants generated around the encapsulating layer and generated in the thermal process can be effectively removed by the cleaning process using plasma. Therefore, the interfacial adhesion between the sealant and the substrate is greatly improved, thereby preventing permeation of external air, moisture, etc., into the device.
Abstract:
The invention is directed to an organic electroluminescent (EL) display device having an improved light extracting efficiency due to a photonic crystal layer formed proximate one side of a stack. Among other elements, the stack may include a first electrode formed on a substrate, an organic light emitting layer formed above the first electrode, and a second electrode formed above the organic light emitting layer. Additionally, the photonic crystal layer may be configured to correspond to a wavelength of colored light. An organic EL display device having an improved light extracting efficiency may be manufactured using a thermal transfer donor film to adhere the photonic crystal layer to the stack.
Abstract:
Provided are an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes a substrate; an sealing substrate facing the substrate, an organic light emitting unit disposed between the substrate and the sealing substrate and having a plurality of organic light emitting devices emitting light, and a plurality of grooves formed in a light extracting surface of the organic light emitting display device through which the light is emitted to the outside. In one embodiment, the grooves are formed on the sealing substrate, and in another embodiment, the grooves are formed on the substrate.
Abstract:
A flat panel display and method of fabricating the same are disclosed. The flat panel display includes a first substrate having a pixel region; a light-emitting element located on the pixel region; a second substrate located opposite the first substrate; and a sealant located between the first and second substrates to cover the light-emitting element. At least one of the first and second substrates includes a groove formed around at least a portion of the circumference surrounding the pixel region. When the first and second substrates are pressed together with the sealant between them, the sealant spreads, covering the light-emitting element, and at least partially filling the groove.