MICROFEMTOTOMY METHODS AND SYSTEMS
    51.
    发明公开

    公开(公告)号:US20230190526A1

    公开(公告)日:2023-06-22

    申请号:US18154838

    申请日:2023-01-15

    Abstract: Methods and systems for performing laser-assisted surgery on an eye form one or more small anchoring capsulotomies in the lens capsule of the eye. The one or more anchoring capsulotomies are configured to accommodate corresponding anchoring features of an intraocular lens and/or to accommodate one or more drug-eluting members. A method for performing laser-assisted eye surgery on an eye having a lens capsule includes forming an anchoring capsulotomy in the lens capsule and coupling an anchoring feature of the intraocular lens with the anchoring capsulotomy. The anchoring capsulotomy is formed by using a laser to incise the lens capsule. The anchoring feature can protrude transverse to a surface of the intraocular lens that interfaces with the lens capsule adjacent to the anchoring capsulotomy.

    CORNEAL TOPOGRAPHY MEASUREMENT AND ALIGNMENT OF CORNEAL SURGICAL PROCEDURES

    公开(公告)号:US20220387219A1

    公开(公告)日:2022-12-08

    申请号:US17820848

    申请日:2022-08-18

    Abstract: Methods and apparatus are configures to measure an eye without contacting the eye with a patient interface, and these measurements are used to determine alignment and placement of the incisions when the patient interface contacts the eye. The pre-contact locations of one or more structures of the eye can be used to determine corresponding post-contact locations of the one or more optical structures of the eye when the patient interface has contacted the eye, such that the laser incisions are placed at locations that promote normal vision of the eye. The incisions are positioned in relation to the pre-contact optical structures of the eye, such as an astigmatic treatment axis, nodal points of the eye, and visual axis of the eye.

    Laser eye surgery system
    54.
    发明授权

    公开(公告)号:US11478380B2

    公开(公告)日:2022-10-25

    申请号:US16987306

    申请日:2020-08-06

    Abstract: An imaging system includes an eye interface device, a scanning assembly, a beam source, a free-floating mechanism, and a detection assembly. The eye interface device interfaces with an eye. The scanning assembly supports the eye interface device and scans a focal point of an electromagnetic radiation beam within the eye. The beam source generates the electromagnetic radiation beam. The free-floating mechanism supports the scanning assembly and accommodates movement of the eye and provides a variable optical path for the electronic radiation beam and a portion of the electronic radiation beam reflected from the focal point location. The variable optical path is disposed between the beam source and the scanner and has an optical path length that varies to accommodate movement of the eye. The detection assembly generates a signal indicative of intensity of a portion of the electromagnetic radiation beam reflected from the focal point location.

    CONFOCAL LASER EYE SURGERY SYSTEM
    55.
    发明申请

    公开(公告)号:US20220110520A1

    公开(公告)日:2022-04-14

    申请号:US17645747

    申请日:2021-12-23

    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.

    CALIBRATION PROCESS FOR FEMTOSECOND LASER INTRAOCULAR LENS MODIFICATION SYSTEM USING VIDEO AND OCT TARGETING

    公开(公告)号:US20220015949A1

    公开(公告)日:2022-01-20

    申请号:US17057691

    申请日:2020-04-08

    Abstract: The XYZ beam position of an ophthalmic laser system is calibrated by measuring a fluorescent signal induced by the focused laser beam in a thin glass coverslip via multiphoton absorption. A video camera measures the XY position and intensity of the fluorescent signal as the focused laser beam strikes the coverslip. The Z position of the focus is determined by scanning the targeted z position and identifying the Z scanner position of peak fluorescence. An OCT system measures the real space Z location of the coverslip, which is correlated with the Z scanner position. Other laser system parameters are assessed by repeatedly scanning a lower energy laser beam in a piece of IOL material, and observing damage (scattering voids) formation in the IOL material. Based on the rate of damage formation, laser system parameters such as beam quality, numerical aperture, pulse energy, and pulse duration, etc. can be assessed.

    Automated calibration of laser system and tomography system with fluorescent imaging of scan pattern

    公开(公告)号:US11020273B2

    公开(公告)日:2021-06-01

    申请号:US16166661

    申请日:2018-10-22

    Abstract: A laser system calibration method and system are provided. In some methods, a calibration plate may be used to calibrate a video camera of the laser system. The video camera pixel locations may be mapped to the physical space. A xy-scan device of the laser system may be calibrated by defining control parameters for actuating components of the xy-scan device to scan a beam to a series of locations. Optionally, the beam may be scanned to a series of locations on a fluorescent plate. The video camera may be used to capture reflected light from the fluorescent plate. The xy-scan device may then be calibrated by mapping the xy-scan device control parameters to physical locations. A desired z-depth focus may be determined by defining control parameters for focusing a beam to different depths. The video camera or a confocal detector may be used to detect the scanned depths.

    METHODS AND SYSTEMS FOR OPTHALMIC MEASUREMENTS AND LASER SURGERY AND METHODS AND SYSTEMS FOR SURGICAL PLANNING BASED THEREON

    公开(公告)号:US20210077300A1

    公开(公告)日:2021-03-18

    申请号:US17103907

    申请日:2020-11-24

    Abstract: An ophthalmic measurement and laser surgery system includes: a laser source; a corneal topography subsystem; an axis determining subsystem; a ranging subsystem comprising an Optical Coherence Tomographer (OCT); and a refractive index determining subsystem. All of the subsystems are under the operative control of a controller. The controller is configure to: operate the corneal topography subsystem to obtain corneal surface information; operate the axis determining subsystem to identify one or more ophthalmic axes of the eye; operate the OCT to sequentially scan the eye in a plurality of OCT scan patterns, the plurality of scan patterns configured to determine an axial length of the eye; operate the refractive index determining subsystem so to determine an index of refraction of one or more ophthalmic tissues, wherein at least one of the corneal surface information, ophthalmic axis information, and axial length is modified based on the determined index of refraction.

    Methods and systems for ophthalmic measurements and laser surgery and methods and systems for surgical planning based thereon

    公开(公告)号:US10849789B2

    公开(公告)日:2020-12-01

    申请号:US15269781

    申请日:2016-09-19

    Abstract: An ophthalmic measurement and laser surgery system includes: a laser source; a corneal topography subsystem; an axis determining subsystem; a ranging subsystem comprising an Optical Coherence Tomographer (OCT); and a refractive index determining subsystem. All of the subsystems are under the operative control of a controller. The controller is configure to: operate the corneal topography subsystem to obtain corneal surface information; operate the axis determining subsystem to identify one or more ophthalmic axes of the eye; operate the OCT to sequentially scan the eye in a plurality of OCT scan patterns, the plurality of scan patterns configured to determine an axial length of the eye; operate the refractive index determining subsystem so to determine an index of refraction of one or more ophthalmic tissues, wherein at least one of the corneal surface information, ophthalmic axis information, and axial length is modified based on the determined index of refraction.

Patent Agency Ranking