Abstract:
The present invention is a method and system for supporting a beamforming antenna system in a mobile broadband communication network with an improved beam pattern, beam sweep pattern, pilot channel design with feedback and reporting rules, and control signaling design. Specifically, the improved beam pattern includes a method of supporting wireless communications in a wireless network fornling at least two spatial beams within a cell segment where the at least two spatial beams are associated with different power levels, and separately, where at least two spatial beams can be moved across the cell segment according to a unique sweep pattern. The pilot channel design improves network bandwidth performance and improves user mobility tracking. Feedback and reporting rules can be established using a particular field designator, CQI, in the preferred embodiment.
Abstract:
Neighbor cell hearability can be improved by including an additional reference signal that can be detected at a low sensitivity and a low signal-to-noise ratio, by introducing non-unity frequency reuse for the signals used for a time difference of arrival (TDOA) measurement, e.g., orthogonality of signals transmitted from the serving cell sites and the various neighbor cell sites. The new reference signal, called the TDOA-RS, is proposed to improve the hearability of neighbor cells in a cellular network that deploys 3GPP EUTRAN (LTE) system, and the TDOA-RS can be transmitted in any resource blocks (RB) for PDSCH and/or MBSFN subframe, regardless of whether the latter is on a carrier supporting both PMCH and PDSCH or not. Besides the additional TDOA-RS reference signal, an additional synchronization signal (TDOA-sync) may also be included to improve the hearability of neighbor cells.
Abstract:
The present invention provides for an improved application of signal strength weightings in a SDMA sectorized cellular network. The improved signal strength weightings application is conducted through the improved selection of weightings from a new codebook subset or by the selection of weightings from a larger codebook subset. In a further embodiment, an antenna beam index or bit map can be used to select the best beam(s) in a SDMA sectorized cellular network. In another embodiment, a field or factor in an uplink or downlink transmission packet can designate which directional transmission beam is best suited for the transmission or when the directional transmission beam should be activated.
Abstract:
In general, according to an embodiment, a wireless transmitter includes a plurality of coding and modulation modules to apply corresponding coding and modulation algorithms to input information blocks. A discrete Fourier transform (DFT) precoder applies DFT processing to outputs of the coding and modulation modules, and an inverse fast Fourier transform (IFFT) module receives a DFT output of the DFT precoder, which is mapped to different subcarriers according to the resource allocation indicated by the base station, and applies IFFT processing to the DFT output. An output processing stage produces output signals based on the output of the IFFT module to transmit wirelessly to a wireless receiver. In a different implementation, the outputs of the coding and modulation modules can be provided to an IFFT module to produce IFFT-processed output information.
Abstract:
The present invention provides for an improved application of signal strength weightings in a SDMA sectorized cellular network. The improved signal strength weightings application is conducted through the improved selection of weightings from a new codebook subset or by the selection of weightings from a larger codebook subset. In a further embodiment, an antenna beam index or bit map can be used to select the best beam(s) in a SDMA sectorized cellular network. In another embodiment, a field or factor in an uplink or downlink transmission packet can designate which directional transmission beam is best suited for the transmission or when the directional transmission beam should be activated.
Abstract:
The present invention provides for an improved application of signal strength weightings in a SDMA sectorized cellular network. The improved signal strength weightings application is conducted through the improved selection of weightings from a new codebook subset or by the selection of weightings from a larger codebook subset. In a further embodiment, an antenna beam index or bit map can be used to select the best beam(s) in a SDMA sectorized cellular network. In another embodiment, a field or factor in an uplink or downlink transmission packet can designate which directional transmission beam is best suited for the transmission or when the directional transmission beam should be activated.
Abstract:
In general, to provide acknowledgment information by a first wireless device, the first wireless device sends repeated instances of acknowledgment information in respective first and second frame structures, in response to receipt of first information from a second wireless device. In addition, the first wireless device also sends further acknowledgment information in the second frame structure that is responsive to second information received from the second wireless device.
Abstract:
To report feedback information regarding a wireless channel, a mobile station determines whether a predefined condition is satisfied. In response to determining that the predefined condition is satisfied, feedback information regarding an individual one of plural subbands of the wireless channel is included in a first report to be sent to a base station. In response to determining that the predefined condition is not satisfied, aggregate feedback information regarding the plural subbands is included in a second report to be sent to the base station.
Abstract:
The present invention is a method and system for supporting a beamforming antenna system in a mobile broadband communication network with an improved beam pattern, beam sweep pattern, pilot channel design with feedback and reporting rules, and control signaling design. Specifically, the improved beam pattern includes a method of supporting wireless communications in a wireless network forming at least two spatial beams within a cell segment where the at least two spatial beams are associated with different power levels, and separately, where at least two spatial beams can be moved across the cell segment according to a unique sweep pattern. The pilot channel design improves network bandwidth performance and improves user mobility tracking Feedback and reporting rules can be established using a particular field designator, CQI, in the preferred embodiment.
Abstract:
Neighbor cell hearability can be improved by including an additional reference signal that can be detected at a low sensitivity and a low signal-to-noise ratio, by introducing non-unity frequency reuse for the signals used for a time difference of arrival (TDOA) measurement, e.g., orthogonality of signals transmitted from the serving cell sites and the various neighbor cell sites. The new reference signal, called the TDOA-RS, is proposed to improve the hearability of neighbor cells in a cellular network that deploys 3GPP EUTRAN (LTE) system, and the TDOA-RS can be transmitted in any resource blocks (RB) for PDSCH and/or MBSFN subframe, regardless of whether the latter is on a carrier supporting both PMCH and PDSCH or not. Besides the additional TDOA-RS reference signal, an additional synchronization signal (TDOA-sync) may also be included to improve the hearability of neighbor cells.