Abstract:
Some embodiments of the invention provide a navigation application that presents road signs during a navigation presentation. In presenting the road signs, the application of some embodiments differentiates the appearance of road signs at junctions that require a change of direction from road signs at junctions that do not require a change of direction. The application may perform processes that ensure that it arranges the road signs on the map in an aesthetically pleasing manner. In addition, the navigation application of some embodiments does not display too many road signs along the navigated route so that the route is not by occluded by too many road signs.
Abstract:
Some embodiments of the invention provide a mobile device with a novel route prediction engine that (1) can formulate predictions about current or future destinations and/or routes to such destinations for the device's user, and (2) can relay information to the user about these predictions. In some embodiments, this engine includes a machine-learning engine that facilitates the formulation of predicted future destinations and/or future routes to destinations based on stored, user-specific data. The user-specific data is different in different embodiments. In some embodiments, the stored, user-specific data includes data about any combination of the following (1) previous destinations traveled to by the user, (2) previous routes taken by the user, (3) locations of calendared events in the user's calendar, (4) locations of events for which the user has electronic tickets, and (5) addresses parsed from recent e-mails and/or messages sent to the user. The device's prediction engine only relies on user-specific data stored on the device in some embodiments, relies only on user-specific data stored outside of the device by external devices/servers in other embodiments, and relies on user-specific data stored both by the device and by other devices/servers in other embodiments.
Abstract:
Displaying frames on an electronic display. Each frame is characterized by a time. Determining a characteristic of data related to each element of a first set of frames, each frame characterized as within a first time period. Determining a rate of change over time of the characteristic. Determining a frame rate based on the determined rate of change. Displaying a second set of frames at the frame rate.
Abstract:
A mobile computing device can be used to locate a vehicle parking location in weak location signal scenarios (e.g., weak, unreliable, or unavailable GPS or other location technology). In particular, the mobile device can determine when a vehicle in which the mobile device is located has entered into a parked state. GPS or other primary location technology may be unavailable at the time the mobile device entered into a parked state (e.g., inside a parking structure). The location of the mobile device at a time corresponding to when the vehicle is identified as being parked can be determined using the first location technology as supplemented with sensor data of the mobile device. After the location of the mobile device at a time corresponding to when the vehicle is identified as being parked is determined, the determined location can be associated with an identifier for the current parking location.
Abstract:
Some embodiments of the invention provide a mobile device with a novel route prediction engine that (1) can formulate predictions about current or future destinations and/or routes to such destinations for the device's user, and (2) can relay information to the user about these predictions. In some embodiments, this engine includes a machine-learning engine that facilitates the formulation of predicted future destinations and/or future routes to destinations based on stored, user-specific data. The user-specific data is different in different embodiments. In some embodiments, the stored, user-specific data includes data about any combination of the following (1) previous destinations traveled to by the user, (2) previous routes taken by the user, (3) locations of calendared events in the user's calendar, (4) locations of events for which the user has electronic tickets, and (5) addresses parsed from recent e-mails and/or messages sent to the user. The device's prediction engine only relies on user-specific data stored on the device in some embodiments, relies only on user-specific data stored outside of the device by external devices/servers in other embodiments, and relies on user-specific data stored both by the device and by other devices/servers in other embodiments.
Abstract:
A mobile computing device can be used to locate a vehicle parking location. In particular, the mobile device can automatically identify when a vehicle in which the mobile device is located has entered into a parked state. The mobile device can determine that the vehicle is in a parked state by analyzing one or more parameters that indicate a parked state or a transit state. The location of the mobile device at a time corresponding to when the vehicle is identified as being parked can be associated with an identifier for the current parking location.
Abstract:
Some embodiments provide a navigation application. The navigation application includes an interface for receiving data describing junctures along a route from a first location to a second location. The data for each juncture comprises a set of angles at which roads leave the juncture. The navigation application includes a juncture simplifier for simplifying the angles for the received junctures. The navigation application includes an arrow generator for generating at least two different representations of the simplified juncture. The representations are for use in displaying navigation information describing a maneuver to perform at the juncture during the route. The navigation application includes an arrow selector for selecting one of the different representations of the simplified juncture for display according to a context in which the representation will be displayed.