Abstract:
The present disclosure provides a transparent liquid crystal display panel and a transparent liquid crystal display. The transparent liquid crystal display panel includes a backlight module, a color filter substrate and a TFT array substrate which are cell-assembled. Liquid crystal is filled between the color filter substrate and the TFT array substrate. Each pixel unit of the color filter substrate includes a sub-pixel unit and a transparent pixel unit. A region on the TFT array substrate that corresponds to the transparent pixel unit is transparent. A region between the color filter substrate and the TFT array substrate that corresponds to the transparent pixel unit is provided with a transparent resin spacer. A region in the backlight module that corresponds to the transparent pixel unit is a transparent region.
Abstract:
An array substrate and a liquid crystal display device adopt a four-domain electrode structure and have advantages of improving the gradient of a V-T curve and contrast, achieving ideal response time, and the like. The array substrate comprises gate lines, data lines and pixel units defined by the gate lines and the data lines. Pixel electrodes (10) and common electrodes (11) arranged on the same layer are formed in the pixel units. Both the common electrodes (11) and the pixel electrodes (10) adopt a comb structure, and comb teeth of the common electrodes (11) and comb teeth of the pixel electrodes (10) are alternately arranged. Each comb tooth of the comb structure is divided into an upper comb tooth (13) and a lower comb tooth (14) in different directions by a node (12). All the upper comb teeth (13) are parallel to each other, and all the lower comb teeth (14) are parallel to each other. For a pixel electrode (10) and a common electrode (11) that are neighboring each other, a spacing (151) between two upper comb teeth (13) is unequal to a spacing (152) between two lower comb teeth (14).
Abstract:
There is provided a flexible transparent liquid crystal display (10) comprises a first flexible substrate (101) provided with a common electrode layer (102); a second flexible substrate (105) provided with an array of pixel electrodes (103) and thin film field effect transistors (104); wherein at least one bi-stable state polymer dispersed liquid crystal layer (106) is provided between the first flexible substrate (104) and the second flexible substrate (105). There is also provided a method for preparing the same, which can increase the efficiency of the process for preparing the flexible transparent liquid crystal display.
Abstract:
According to embodiments of the present invention, there are provided a lens panel, a method for manufacturing the same and a 3D display device. The lens panel comprises: a first transparent substrate; a second transparent substrate, disposed opposite to the first transparent substrate; positive electrodes and negative electrodes, which are in a strip shape, and disposed on a side of the first transparent substrate opposed to the second transparent substrate parallel to each other and alternately; a second transparent liquid and a first transparent liquid filled between the first transparent substrate and the second transparent substrate in this order from the second transparent substrate to the first transparent substrate, the first transparent liquid and the second transparent liquid being immiscible, and reflectance of the first transparent liquid being larger than reflectance of the second transparent liquid.
Abstract:
Embodiments of the present invention provide a transflective liquid crystal display (LCD) panel and a display having the same. The transflective liquid crystal display panel comprises a plurality of pixels, each pixel including a reflective region, a transmissive region, and a transition region located between the reflective region and the transmissive region. A light shielding layer is provided in at least a part of the plurality of the pixels, and the light shielding layer is provided at a position corresponding to the transition region.
Abstract:
A display panel includes a display substrate and a touch layer. The display substrate includes a substrate and an anode layer. The anode layer includes a plurality of anodes, and at least one edge of at least one anode is provided with at least one groove therein. The touch layer is located on a light exit side of the display substrate. The touch layer includes a metal mesh structure, the metal mesh structure includes a plurality of first metal lines, and each first metal line includes an opening. An orthographic projection of each of the plurality of first metal lines on the substrate is located between orthographic projections of the plurality of anodes on the substrate. An orthogonal projection of each groove of the at least one anode on the substrate is disposed opposite to an orthogonal projection of an opening of a first metal line on the substrate.
Abstract:
A touch structure includes a metal mesh including a plurality of metal conductive lines. The metal mesh has a plurality of openings, each opening is enclosed by metal conductive lines, and a shape of each opening is asymmetric.
Abstract:
The touch display screen includes a display panel, a touch electrode structure on a light-emitting side of the display panel and a bezel cover layer. The touch display screen includes a display area and a bezel area, and the bezel area has a protrusion sub-area toward the display area. The bezel cover layer is located in the bezel area. The touch electrode structure includes a plurality of touch electrodes and a plurality of leads. The plurality of touch electrodes are located in the display area, and the plurality of leads are arranged in the bezel area along an edge of the display area. The portion of each of the plurality of leads adjacent to the protrusion sub-area is a preset lead portion. An orthographic projection of the bezel cover layer on the display panel covers an orthographic projection of at least one the preset lead portion on the display panel.
Abstract:
A display panel and a display device are provided. In the display panel, a plurality of main spacers and a plurality of auxiliary spacers are disposed on a side of a first substrate close to a second substrate, the second substrate further includes a plurality of first lug bosses and a plurality of second lug bosses; an orthographic projection of the main spacers on the second substrate is at least partially overlapped with an orthographic projection of a corresponding first lug boss on the second substrate; an orthographic projection of the auxiliary spacers on the second substrate is away from an orthographic projection of a corresponding second lug boss on the second substrate by a preset distance; and the distance between each of the auxiliary spacers and the corresponding second lug boss is less than a height of the first lug bosses.
Abstract:
A display panel, a display device, and a method for manufacturing a display panel are provided. The display panel includes first and second substrates, first and second alignment films and a liquid crystal layer extending along a first direction and a second direction and sequentially along a third direction perpendicular to the first direction and the second direction. The liquid crystal layer includes a column of liquid crystal molecules along the third direction, and includes a first liquid crystal molecule closest to the first alignment film and a second liquid crystal molecule closest to the second alignment film. The first liquid crystal molecule and the second liquid crystal molecule have different tilting tendencies with respect to the plane defined by the first direction and the second direction, and form a twist angle.