Abstract:
Embodiments provided describe detections of RF leakage test signal emanating from cable plant. In one embodiment a single mobile receive antenna, connected to a complex demodulator mobile receiver, receives a stabilized test signal radiating from the cable plant. The test signal may be a known continuous wave (CW) carrier or other deterministic signal. The received test signal varies in phase as a function of a position of the mobile receive antenna relative to the location of a leakage antenna. The phase variance forms a Doppler shift as the test antenna moves relative to the leakage antenna. The receiver generates multiple in-phase (I) and quadrature (Q) test signal samples over a SPA (synthetic phased array) distance as the test antenna's travels, and the samples are inserted into a Fourier transform. The result of the transform is instantaneous Doppler frequency shift, from which a bearing angle can be computed.
Abstract:
Embodiments described provide detection of RF leaks in a coaxial cable of a cable plant. One embodiment comprises a mobile device that includes an antenna, a quadrature demodulator, and a controller. The antenna receives an RF signal from an RF leak in the coaxial cable. The quadrature demodulator demodulates the RF signal to generate IQ data. The controller determines changes in a phase angle of the RF signal based on the IQ data generated as the mobile device is in motion, and identifies that the mobile device is travelling toward the RF leak responsive to determining that the phase angle is advancing. The controller identifies that the mobile device is travelling away from the RF leak responsive to determining that the phase angle is retarding.
Abstract:
A method to capture random data signals at an end point in a broadband network and process them via digital signal processing (DSP) techniques to determine both linear distortions and nonlinear distortions. In a distribution network, such as a tree and branch cable network, the location of the impairment addition can be identified by determining location of terminals have a distortion and locations of terminals that do not have a distortion. Linear distortions may be determined by an autocorrelation of the captured signal with itself. Nonlinear distortions may be determined by processing measured energy in a vacant band with manufactured energy in the vacant band. If a vacant band is not available, one can be created by demodulating a signal occupying the band, and subtracting the demodulated signal from the measured signal plus interference in a band, leaving only the interference.
Abstract:
A communication system, includes a satellite receiver in operable communication with a central server, a cellular node configured to operate within a proximity of the satellite receiver, and at least one mobile communication device configured to communicate (i) with the cellular node, (ii) within the proximity of the satellite receiver, and (iii) using a transmission signal capable of causing interference to the satellite receiver. The satellite receiver is configured to detect a repeating portion of the transmission signal and determine a potential for interference from the at least one mobile communication device based on the detected repeating portion.
Abstract:
A method of reducing transmission power for an encoded data stream includes the steps of receiving an incoming data stream having equal probability for a plurality of incoming data bits, assigning a symbol scheme to the received data bits of the incoming data stream according to probabilities of occurrence of individual ones of the received data bits, and transmitting an outgoing data stream according to the assigned symbol scheme having a second average transmit power, different than the first average transmit power, for a plurality of outgoing symbols.
Abstract:
Systems and methods presented herein provide for improved duplex communications in an RF cable network comprising a plurality of CMs. In one embodiment, a system includes a CMTS operable to transmit downstream communications to the CMs and to process upstream communications from the CMs. The system also includes a duplex RF communication path between the CMTS and the CMs. The CMTS is further operable to transmit a control signal that directs a first of the CMs to transmit, to direct the remaining CMs to receive the transmission from the first CM, to direct the CMs to report received power levels of the transmission from the first CM, and to calculate RF isolations of the remaining CMs with respect to the first CM based on the reported power levels.
Abstract:
A communication system, includes a satellite receiver in operable communication with a central server, a cellular node configured to operate within a proximity of the satellite receiver, and at least one mobile communication device configured to communicate (i) with the cellular node, (ii) within the proximity of the satellite receiver, and (iii) using a transmission signal capable of causing interference to the satellite receiver. The satellite receiver is configured to detect a repeating portion of the transmission signal and determine a potential for interference from the at least one mobile communication device based on the detected repeating portion.
Abstract:
A communication system includes an earth station configured to receive a downlink transmission from a satellite and transmit an uplink transmission to the satellite. The communication system further includes a server in operable communication with the earth station, a beacon detector in operable communication with the server, an access point configured to operate within a proximity of the earth station, and a beacon transmitter disposed within close proximity to the access point. The beacon transmitter is configured to transmit a beacon signal to one or more of the server and the beacon detector. The beacon signal uniquely identifies the access point. The server is configured to implement a measurement-based protection scheme with respect to at least one of the downlink transmission and the uplink transmission.
Abstract:
A communication system, includes a satellite receiver in operable communication with a central server, a cellular node configured to operate within a proximity of the satellite receiver, and at least one mobile communication device configured to communicate (i) with the cellular node, (ii) within the proximity of the satellite receiver, and (iii) using a transmission signal capable of causing interference to the satellite receiver. The satellite receiver is configured to detect a repeating portion of the transmission signal and determine a potential for interference from the at least one mobile communication device based on the detected repeating portion.
Abstract:
A communication system, includes a satellite receiver in operable communication with a central server, a cellular node configured to operate within a proximity of the satellite receiver, and at least one mobile communication device configured to communicate (i) with the cellular node, (ii) within the proximity of the satellite receiver, and (iii) using a transmission signal capable of causing interference to the satellite receiver. The satellite receiver is configured to detect a repeating portion of the transmission signal and determine a potential for interference from the at least one mobile communication device based on the detected repeating portion.