Abstract:
Methods and apparatus for providing one-arm node clustering using a port channel are provided herein. An example application node may be communicatively connected to at least one application node, and the application node may be connected to a network through a port channel. The application node may include: a link included in the port channel for accommodating the network data being communicated between the remote client and server; and a processor configured to send/receive a cluster control packet to/from the at least one application node through the link included in the port channel.
Abstract:
In an example, there is provided a network apparatus for providing native load balancing within a switch, including a first network interface operable to communicatively couple to a first network; a plurality of second network interfaces operable to communicatively couple to a second network, the second network comprising a service pool of service nodes; one or more logic elements providing a switching engine operable for providing network switching; and one or more logic elements comprising a load balancing engine operable for: load balancing incoming network traffic to the service pool via native hardware according to a load balancing configuration; detecting a new service node added to the service pool; and adjusting the load balancing configuration to account for the new service node; wherein the switching engine and load balancing engine are configured to be provided on the same hardware as each other and as the first network interface and plurality of second network interfaces.
Abstract:
Methods and apparatus are provided for virtual device context (VDC) integration for network services. VDC integration for network services generally includes mapping a virtual switch, physical ports on the network switch assigned to the virtual switch, a service node and a physical port on a service node to share a common VDC associated with a configuration of the virtual switch. In this manner, the VDC concept is extended to the service node and the network may be easily managed, with a network switch and associated service nodes configured through a single processing system on the network switch or service node.
Abstract:
Presented herein are service chaining techniques for selective traffic redirection based on Access Control List (ACL) configurations on switches. Network traffic forwarded along one or more service chains may be monitored on the basis of individual segments of the service chains. In one example, the network traffic forwarded along individual segments may be counted on a per-segment basis.
Abstract:
In an embodiment, a method is provided. The method includes: storing, in at least one hardware module of a network device having a plurality of ports, attributes for at least one access control list and associated actions that cause network packets received at one of the plurality of ports that match the attributes for the at least one access control list, to be directed into a service chain that includes at least a first network processing application specified according to a port and a second network processing application specified according to an internet protocol (IP) address; and directing a received network packet that matches the attributes for the at least one access control list into the service chain.
Abstract:
A network element includes one or more hardware memory resources of fixed storage capacity for storing data used to configure a plurality of networking features of the network element. A utilization management process runs on the network element to perform operations including obtaining utilization data representing utilization of the one or more hardware memory resources, and analyzing the utilization data of the one or more hardware memory resources to produce summarized utilization data.
Abstract:
Systems, methods, and computer-readable media for creating service chains for inter-cloud traffic. In some examples, a system receives domain name system (DNS) queries associated with cloud domains and collects DNS information associated the cloud domains. The system spoofs DNS entries defining a subset of IPs for each cloud domain. Based on the spoofed DNS entries, the system creates IP-to-domain mappings associating each cloud domain with a respective IP from the subset of IPs. Based on the IP-to-domain mappings, the system programs different service chains for traffic between a private network and respective cloud domains. The system routes, through the respective service chain, traffic having a source associated with the private network and a destination matching the IP in the respective IP-to-domain mapping.
Abstract:
Embodiments include receiving configuration information including a match criterion for packets received at a network device in a network and a pool of layer 3 addresses associated with a set of servers in the network, resolving layer 2 destination addresses based on the layer 3 addresses of the servers, and programming a hardware layer of the network device based, at least in part, on the match criterion, the pool of layer 3 addresses, and the layer 2 destination addresses. Specific embodiments include configuring a policy to indicate that packets from an external source are to be forwarded to a server of the set of servers. Further embodiments include receiving a packet at the network device, and matching the packet to the pool of layer 3 addresses and the resolved layer 2 addresses based, at least in part, on the match criterion programmed in the hardware layer.
Abstract:
An example method is provided and includes configuring a service on a network element; associating a directly connected port with the service to create a port channel between the network element and a directly connected service appliance, the port channel comprising a plurality of member ports; performing an auto-discovery process for each of the member ports; and, upon successful completion of the performing, indicating on the network element that the service appliance is operational. In certain embodiments, the network element includes an intelligent service card manager module (“ISCM”) that forms part of a Remote Integrated Service Engine (“RISE”) element with a corresponding intelligent service card client module (“ISCC”) installed on the service appliance. The method may further include, upon unsuccessful completion of the auto-discovery process, repeating the auto-discovery process.
Abstract:
Systems, methods, and computer-readable media for creating service chains for inter-cloud traffic. In some examples, a system receives domain name system (DNS) queries associated with cloud domains and collects DNS information associated the cloud domains. The system spoofs DNS entries defining a subset of IPs for each cloud domain. Based on the spoofed DNS entries, the system creates IP-to-domain mappings associating each cloud domain with a respective IP from the subset of IPs. Based on the IP-to-domain mappings, the system programs different service chains for traffic between a private network and respective cloud domains. The system routes, through the respective service chain, traffic having a source associated with the private network and a destination matching the IP in the respective IP-to-domain mapping.