Abstract:
A combustion system includes a fuel and oxidant source, a perforated flame holder, and a support structure that supports the perforated flame holder at a selected distance from the fuel and oxidant source. The fuel and oxidant source outputs fuel and oxidant onto the perforated flame holder. The perforated flame holder receives the fuel and oxidant and sustains a combustion reaction of the fuel and oxidant within the perforated flame holder.
Abstract:
An apparatus for retrofitting a coal-fueled burner of, e.g., a furnace, with a gas-fueled burner system for enhancing flame radiation of a gas flame. The gas-fueled burner system includes a flame charging system and an electrically isolated electrode. A time-varying voltage is applied to the flame charging system and the flame charging system imparts a corresponding time-varying charge onto the flame. The flame responds to the time-varying charge by increasing its luminosity and emissivity.
Abstract:
A solid fuel combustion system includes a solid fuel support configured to hold a solid fuel for a combustion reaction. A field electrode is positioned above the solid fuel support. A voltage source supplies a first voltage the solid fuel support and a second voltage to the field electrode.
Abstract:
A burner system includes a nozzle configured to emit a fuel stream for the support of a flame, and first and second electrodes, each configured to apply electrical energy to a flame supported by the nozzle. The first electrode is positioned in a momentum-dominated fluid dynamics region of the flame, while the second electrode is positioned in a buoyancy-dominated fluid dynamics region. Application of charges to the flame via the electrodes can be employed to control flame characteristics in the buoyancy-dominated fluid dynamics region, such as shape and position.
Abstract:
In a combustion system, a charge source is configured to cooperate with a collection plate and a director conduit to cause at least one particle charge-to-mass classification to be reintroduced to a flame for further reaction.
Abstract:
An oscillating combustor may support a time-sequenced combustion reaction having rich and lean phases. The rich and lean phases may be determined according to a flame position relative to a diverging fuel jet. The flame location may be modulated responsive to an interaction between applying a constant voltage or charge rate to a fuel stream or flame, and modulating continuity between a conductive or semiconductive flame holder and an activation voltage.
Abstract:
A gas turbine may include turbine blades configured to improve stream adhesion by selectively attracting or reducing repulsion of charged particles carried by a combustion gas stream.
Abstract:
An electrically stabilized burner is configured to support a combustion reaction such as a combustion reaction substantially at a selected fuel dilution and with a mixing rate selected to maximize the reaction rate without quenching the combustion reaction.
Abstract:
A rotary kiln includes a stationary burner and at least one electrode configured to apply an electric field and/or voltage to a flame supported by the stationary burner. The electric field may contain the flame and/or accelerate combustion to shift most heat transfer from the flame from radiation heat transfer to convective heat transfer.