Abstract:
Glass articles with coatings are disclosed herein. According to embodiments, a glass article may include a glass body comprising glass and having a first surface and a second surface opposite the first surface, wherein the first surface is an exterior surface of the glass body. A coating disposed on at least a portion of the exterior surface of the glass body. The coated glass article may have an effective throughput rate greater than or equal to 1.10×RT, wherein RT is the effective throughput rate of an uncoated glass article in units of parts per minute (ppm).
Abstract:
According to one embodiment, an apparatus for holding may include a plurality of ware keepers for receiving glassware. Each ware keeper may include a retention body comprising a wire coil circumscribing a glassware receiving volume. A lower-most winding of the wire coil forms a ware stop in the retention body. The retention body may include a spacer coil extending from the retention body below the ware stop. A base frame may include a plurality of apertures extending through the base frame. Each of the plurality of ware keepers may be positioned in a corresponding aperture in the base frame such that the retention body of each ware keeper is above a top surface of the base frame and the spacer coil of each ware keeper is below a bottom surface of the base frame.
Abstract:
Coated pharmaceutical packages are disclosed. The coated pharmaceutical packages may include a glass body comprising a first surface and a second surface opposite the first surface. The glass body may be a glass container formed from a borosilicate glass composition and the first surface is an exterior surface of the glass container. A low-friction coating may be positioned on at least a portion of the first surface of the glass body. In embodiments, the low-friction coating may be a fluoropolymer.
Abstract:
According to one embodiment, a coated glass package may include a glass body having a Type 1 chemical durability according to USP 660, a class A2 base resistance or better according to ISO 695, and a type HGB2 hydrolytic resistance or better according to ISO 719. The glass body may include an interior surface and an exterior surface. A lubricous coating having a thickness of ≦100 microns may be positioned on the exterior surface. The portion of the exterior surface with the coating may have a coefficient of friction that is at least 20% less than an uncoated glass package and the coefficient of friction does not increase by more than 30% after undergoing depyrogenation. A horizontal compression strength of the coated glass package is at least 10% greater than an uncoated glass package and the horizontal compression strength is not reduced by more than 20% after depyrogenation.
Abstract:
An ion exchange tank is provided. The ion exchange tank includes a processing chamber and an additive chamber separated by a weir system, the weir system having a flow channel fluidly connecting the processing chamber to the additive chamber, wherein the flow is divided from the additive chamber by a first partition and divided from the processing chamber by a second partition, wherein the additive chamber comprises a solids-absorbing material disposed therein.
Abstract:
The disclosure relates to fame constructions comprising a glass substrate and a curved surface defining at least one curvature, wherein the engagement of the glass substrate with the curved surface imparts a curvature on the glass substrate.
Abstract:
A glass container for storing pharmaceutical formulations may include a glass body formed from a Type IA or Type IB glass composition according to ASTM Standard E438-92(2011). The glass body may include a wall portion with an inner surface and an outer surface, a heel portion and a floor portion, wherein the inner surface of the glass container is formed by the inner surface of the glass body. The glass body may include at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and Type 1 chemical durability according to USP . The glass container does not comprise a boron-rich layer on the inner surface of the glass body in as formed condition.
Abstract:
Coated pharmaceutical packages may comprise a glass body formed from a borosilicate glass composition having a Type 1 chemical durability according to USP 660, the glass body having an interior surface and an exterior surface and a wall extending therebetween. A low-friction thermally stable coating having a thickness of ≤1 μm may be positioned on at least a portion of the exterior surface. The low-friction coating may comprise a silane. The portion of the exterior surface of the coated pharmaceutical package may have a coefficient of friction that is at least 20% less than an uncoated pharmaceutical package formed from the same borosilicate glass composition.
Abstract:
Disclosed herein are delamination resistant glass pharmaceutical containers which may include a glass body having a Class HGA1 hydrolytic resistance when tested according to the ISO 720:1985 testing standard. The glass body may have an interior surface and an exterior surface. The interior surface of the glass body does not comprise a boron-rich layer when the glass body is in an as-formed condition. A heat-tolerant coating may be bonded to at least a portion of the exterior surface of the glass body. The heat-tolerant coating may have a coefficient of friction of less than about 0.7 and is thermally stable at a temperature of at least 250° C. for 30 minutes.
Abstract:
Embodiments of a method of cold-forming a glass article are disclosed. In one or more embodiments, the method includes bending a glass sheet over the chuck such that a first major surface of the glass sheets conforms to a bending surface of the chuck. In one or more embodiments, the method includes adhering a frame to the second major surface of the glass sheet such that at least one spacer is positioned between the glass sheet and the frame.