摘要:
Reporting aperiodic channel state information (A-CSI) via a physical uplink control channel (PUCCH) is disclosed. A UE receives a configuration to report aperiodic channel state information (A-CSI) using physical uplink control channel (PUCCH). The UE can report lightweight A-CSI via short/long PUCCH or may report heavy A-CSI via short/long PUCCH. The UE receives a trigger signal for PUCCH-based A-CSI reporting either by a dedicated downlink grant or by a group common DCI. When triggered via a DCI-based trigger, the PUCCH resource can be either a resource used for HARQ-ACK feedback, e.g., short PUCCH; or a semi-static configured PUCCH resource, e.g., either short PUCCH or long PUCCH. When triggered via a group common DCI-based trigger, the PUCCH resource can be either semi-statically configured, or dynamically indicated.
摘要:
Methods, systems, and devices for wireless communication are described. Generally, the described techniques provide for communicating an uplink grant and a channel state information reference signal (CSI-RS) trigger. A wireless device may identify e a pending collision for a slot of a carrier between a CSI-RS and uplink data. The wireless device may determine a communication configuration for the CSI-RS and the uplink data such that no collision occurs. The determined communication configuration for the CSI-RS may include delaying one of the colliding signals, transmitting only one of the colliding signals and suppressing the other, or reconfiguring the slot such that both signals can be transmitted successfully. Additionally, the UE and the base station may determine a CSI reporting configuration based on the determined communication configuration.
摘要:
A signaling design for multiple aperiodic channel state information (M-A-CSI) feedback is disclosed. In new radio (NR) networks, there may be scenarios where M-A-CSI are triggered and reported simultaneously. Timing issues may arise because of the different delay periods for difference CSI processes and reporting. In a first aspect, a general set of delay times for the M-A-CSI maybe signaled to the user equipment (UE) from which a candidate set is selected by the UE based on various CSI related settings. An indication from the base station may then be used to select the delay from the candidate set. In a second aspect, a delay period may be selected from the set of delays associated with and corresponding to the M-A-CSI.
摘要:
The present invention relates to methods and apparatuses for providing selective network access, wherein a cell type indication is provided based on at least one of a preamble and a header portion of a broadcast signal. At the receiving end, it is checked based on at least one of the preamble and the header portion, whether broadcast signals are received from different first and second cell types. The first cell type is selected for network access, if both broadcast signals from the first and second cell types are received with sufficient strength.
摘要:
Signaling design for interlaced frequency divisional multiplex (IFDM) demodulation reference signals (DMRS) is discussed in which a dynamic indication is provided to a user equipment (UE) from a serving base station that allows the UE to configure transmission of DMRS according to either a single carrier frequency divisional multiplex (SC-FDM) or IFDM configurations, as indicated by the dynamic indication. The IFDM configuration may be applicable to either regular uplink subframes or within the uplink portion of special subframes. In some aspects, power boosting may be provided for the DMRS in order to equalize transmit power between decimated DMRS transmitted with the data tones. Additional aspects may also provide for different offsets to be used depending on the type of uplink control signal transmitted.
摘要:
Aspects of the present disclosure relate to techniques that may help enable the determination of uplink resource allocation in systems that support dynamic uplink-downlink subframe configurations. An example method generally includes receiving signaling indicating a dynamic uplink-downlink (UL-DL) subframe configuration, determining hybrid automatic repeat request (HARQ) acknowledgment/negative acknowledgment (ACK/NACK) timing based on a reference UL-DL subframe configuration, and determining HARQ resource allocation based on the dynamic UL-DL subframe configuration.
摘要:
Enhanced channel state information (CSI) procedures for full dimension-multiple input, multiple output (FD-MIMO) is discussed in which a number of CSI reference signal (CSI-RS) ports configured for a user equipment (UE) is determined. In response to the CSI-RS ports including both horizontal and vertical ports, the UE may determine a first precoding matrix from a plurality of precoding matrices constructed by a Kronecker product of a horizontal precoding matrix and a vertical precoding matrix. The UE selects a predetermined number of precoding vectors out of the first precoding matrix and generates a wideband precoding matrix, based on the selected predetermined number of precoding vectors. The UE reports one or more CSI reports, wherein the CSI reports includes at least one precoding matrix indicator (PMI) for the first precoding matrix and at least an indication of the selection of the predetermined number of precoding vectors.
摘要:
Methods and corresponding apparatuses for wireless communication are disclosed. The method for wireless communication includes dividing a two-dimensional antenna array to a plurality of sub-arrays, mapping the two-dimensional antenna array into a one-dimensional vertical channel state information reference signal (CSI-RS) port array for receiving elevation CSI feedback and a one-dimensional horizontal CSI-RS port array for receiving azimuth CSI feedback, and transmitting one or more elevation CSI-RS from the one-dimensional vertical CSI-RS port array and one or more azimuth CSI-RS from the one-dimensional horizontal CSI-RS port array. Methods and corresponding apparatuses for CSI feedback mechanism are also disclosed.
摘要:
Methods, systems, and devices are described for providing periodic CSI reports and/or aperiodic CSI reports to provide CSI for both anchor and non-anchor TDD subframes in eIMTA. Periodic CSI reports may be provided based on a reference configuration, and aperiodic CSI reports may be provided based on a time of reception of a CSI request and a reference configuration. A UE may determine to report anchor or non-anchor CSI through explicit or implicit signaling. Aperiodic CSI may be used for transmission of anchor subframe CSI reports and periodic CSI may be used for transmission of non-anchor subframe CSI reports, or aperiodic CSI may be used for transmission of non-anchor subframe CSI reports and periodic CSI may be used for transmission of anchor subframe CSI reports. A determination of the reference subframe for aperiodic CSI estimation may be based on a time of receipt of an aperiodic CSI request.
摘要:
Methods, systems, and-devices are described for interference mitigation in a time-division duplex(TDD)wireless communication system. First and second subframe types may be identified for TDD subframes to be transmitted using the system. Different power control parameters associated with each subframe type may be identified based on transmission directions in neighboring cells for the particular subframes. One or more TDD subframes to be transmitted may be identified as a first or second subframe type, and power control may be applied to the transmitted subframes according the power control parameter associated with the subframe type. The identification of subframes and power control parameters to be applied to each type of subframe may be transmitted, for example, to a user equipment(UE). The information may be transmitted to a UE, for example, via radio resource control(RRC)signaling or via a physical layer control channel.