Abstract:
Particular embodiments described herein provide for a communication system that can be configured for receiving, at a network element, a flow offload decision for a first service node. The flow offload decision can include a portion of a service chain for processing a flow and updating next hop flow based routing information for the flow. A next hop in the flow can insert flow specific route information in its routing tables to bypass a packet forwarder serving the service that offloaded the flow in the reverse direction.
Abstract:
In one embodiment, a method includes creating a catalog of service function (“SF”) profiles, wherein each of the profiles is associated with an SF and indicates a type of the associated SF; storing the catalog of SF profiles in a memory device of a service controller associated with the DVS; creating a service profile group template (“SPGT”) that includes at least one SF profile from the catalog of SF profiles, wherein the SPGT includes a service chain definition identifying at least one service chain comprising the SF associated with the at least one SF profile to be executed in connection with a service path and at least one policy for classifying traffic to the at least one service chain; deploying a first SPG instance based on the SPGT; and deploying an additional SPG instance based on the SPGT in accordance with a scaling policy included in the SPGT.
Abstract:
An example method is provided in one example embodiment and may include receiving traffic associated with at least one of a mobile network and a Gi-Local Area Network (Gi-LAN), wherein the traffic comprises one or more packets; determining a classification of the traffic to a service chain, wherein the service chain comprises one or more service functions associated at least one of one or more mobile network services and one or more Gi-LAN services; routing the traffic through the service chain; and routing the traffic to a network using one of a plurality of egress interfaces, wherein each egress interface of the plurality of egress interfaces is associated with at least one of the one or more mobile network services and the one or more Gi-LAN services.
Abstract:
In an embodiment, a method is provided for enabling in-band data exchange between networks. The method can comprise receiving, by a first enveloping proxy located in the first network, at least one regular secure sockets layer (SSL) record for a SSL session established between a client and a server; receiving the data from a network element located in the first network; encoding the data into at least one custom SSL record; and transmitting the at least one regular SSL record and the at least one custom SSL record to an enveloping proxy. In another embodiment, a method can comprise receiving at least one regular secure sockets layer (SSL) record and at least one custom SSL record for a SSL session established between a client and a server; extracting the data from the at least one custom SSL; transmitting the at least one regular SSL record.
Abstract:
An example method is provided in one example embodiment and may include receiving a packet for a subscriber at a gateway, wherein the gateway includes a local policy anchor for interfacing with one or more policy servers and one or more classifiers for interfacing with one or more service chains, each service chain including one or more services accessible by the gateway; determining a service chain to receive the subscriber's packet; appending the subscriber's packet with a header, wherein the header includes, at least in part, identification information for the subscriber and an Internet Protocol (IP) address for the local policy anchor; and injecting the packet including the header into the service chain determined for the subscriber.
Abstract:
In an embodiment, a method is provided for enabling in-band data exchange between networks. The method can comprise receiving, by a first enveloping proxy located in the first network, at least one regular secure sockets layer (SSL) record for a SSL session established between a client and a server; receiving the data from a network element located in the first network; encoding the data into at least one custom SSL record; and transmitting the at least one regular SSL record and the at least one custom SSL record to an enveloping proxy. In another embodiment, a method can comprise receiving at least one regular secure sockets layer (SSL) record and at least one custom SSL record for a SSL session established between a client and a server; extracting the data from the at least one custom SSL; transmitting the at least one regular SSL record.