摘要:
A method for reconstructing image data from measured sinogram data acquired from a CT system is provided. The CT system is configured for industrial imaging. The method includes pre-processing the measured sinogram data. The pre-processing includes performing a beam hardening correction on the measured sinogram data and performing a detector point spread function (PSF) correction and a detector lag correction on the measured sinogram data. The pre-processed sinogram data is reconstructed to generate the image data.
摘要:
A computed tomography detector module is presented. The detector module includes a substrate having a topside and a bottom side. Additionally, the detector module includes a plurality of detector layers disposed on the top side of the substrate in a direction that is substantially orthogonal to the substrate, where each of the plurality of detector layers comprises a direct conversion material configured to absorb radiation, and where each of the plurality of detector layers comprises a first side and a second side. Further, the detector module includes a plurality of pixelated anode contacts is disposed on the first side of each of the plurality of detector layers. Also, the detector module includes a common cathode contact is disposed on the second side of each of the plurality of detector layers.
摘要:
A method for reconstructing image data from measured sinogram data acquired from a CT system is provided. The CT system is configured for industrial imaging. The method includes pre-processing the measured sinogram data. The pre-processing includes performing a beam hardening correction on the measured sinogram data and performing a detector point spread function (PSF) correction and a detector lag correction on the measured sinogram data. The pre-processed sinogram data is reconstructed to generate the image data.
摘要:
An imaging detection system includes at least one location detection device configured to determine coordinates of a target, at least one detector configured to detect events from a source associated with the target, and a processor coupled in communication with the at least one location detection device and the at least one detector. The processor is configured to receive the coordinates from the at least one location detection device and the events from the at least one detector, translate the events using the coordinates acquired from the at least one location detection device to compensate for a relative motion between the source and the at least one detector, and output a processed data set having the events translated based on the coordinates.
摘要:
Disclosed herein is a method for detecting high atomic number elements in an article by using radiation having two different energies. The detecting of high atomic number elements can be accomplished by using an algorithm, curve fitting or using a data table. Disclosed herein too is a radiation system that uses the aforementioned method for detecting high atomic number elements.
摘要:
An application-specific integrated circuit (ASIC) comprising a plurality of channels, each channel having circuitry for time and energy discrimination, a plurality of programmable registers, each programmable register configured to output at least one configuration parameter for the circuitry, and a channel-select register configured to identify a channel of the plurality of channels to be configured. The ASIC further includes a configuration-select register configured to identify the programmable register to be used for channel configuration, and a communications interface configured to transmit instructions received from a controller to one of the channel-select register, the configuration-select register, and the plurality of programmable registers.
摘要:
A data acquisition system including a readout Application Specific Integrated Circuit (ASIC) having a plurality of channels, each channel having a time discriminating circuit and an energy discriminating circuit, wherein the ASIC is configured to receive a plurality of signals from a semiconductor radiation detector. The data acquisition system also includes a digital-to-analog converter (DAC) electrically coupled to the ASIC and configured to provide a reference signal to the ASIC used in the generation of digital outputs from the ASIC, and a controller electrically coupled to the ASIC and to the DAC, the controller configured to instruct the DAC to provide the reference signal to the ASIC.
摘要:
A diagnostic imaging system includes a high frequency electromagnetic energy source that emits a beam of high frequency electromagnetic energy toward an object to be imaged. An energy discriminating (ED) detector receives high frequency electromagnetic energy emitted by the high frequency electromagnetic energy source. The ED detector includes a first direct conversion layer and a second direct conversion layer. The first direct conversion layer comprises a first direct conversion material and the second direct conversion layer comprises a second direct conversion material that is different from the first direct conversion material. A data acquisition system (DAS) is operably connected to the ED detector and a computer operably connected to the DAS.
摘要:
A bowtie filter is constructed to have a fluidic envelope filled with attenuating fluid and a displacement insert that can present various x-ray attenuation profiles during a scan. The insert is designed to displace the attenuating fluid to achieve a denied attenuating or filtering profile. The insert can be rotated, twisted, moved, and otherwise contorted within the fluidic envelope as needed during the course of a scan. As the angle, position and shape of the zombie is changed, the x-ray profile of the filter changes. The insert may have a default shape when at rest, but can have its shape changed when external forces are placed thereon. As x-ray filtering needs change during the course of the scan, the insert can be compressed, stretched, and/or contorted to achieve additional filtering profiles.
摘要:
A CT detector capable of energy discrimination and direct conversion is disclosed. The detector includes multiple layers of semiconductor material with the layers having varying thicknesses. The detector is constructed to be segmented in the x-ray penetration direction so as to optimize count rate performance as well as avoid saturation. The detector also includes variable pixel pitch and a flexible binning of pixels to further enhance count rate performance.