Abstract:
In some embodiments, an encoder device is disclosed to generate single-channel standard dynamic range/high dynamic range content predictors. The device receives a standard dynamic range image content and a representation of a high dynamic range image content. The device determines a first mapping function to map the standard dynamic range image content to the high dynamic range image content. The device generates a single channel prediction metadata based on the first mapping function, such that a decoder device can subsequently render a predicted high dynamic range image content by applying the metadata to transform the standard dynamic range image content to the predicted high definition image content.
Abstract:
Motion characteristics related to foreground objects and background regions bordering the foreground objects in images are determined. A frame rate conversion (FRC)-related metadata portion is generated based on the motion characteristics. The FRC-related metadata portion is to be used for determining an optimal FRC operational mode with a downstream device for the images. The images are encoded into a video stream. The FRC-related metadata portion is encoded into the video stream as a part of image metadata. The video stream is caused to be transmitted to the downstream device.
Abstract:
Methods for the chroma reshaping of high-dynamic range (HDR) signals are presented. For each input pixel, a first scaler is generated based on the pixel luminance and a luma-based chroma reshaping (LCR) function. A second scaler is generated based on a saturation-based chroma reshaping (SCR) function and the saturation value of the pixel. A cascaded scaler is generated by multiplying the first scaler with the second scaler. Reshaped chroma values are generated by multiplying the input chroma values with the cascaded scaler. The characteristics of preferred LCR and SCR functions are discussed. Inverse decoding methods based on chroma-reshaping metadata that define the LCR and SCR functions are also described.
Abstract:
Systems and methods for overlaying a second image/video data onto a first image/video data are described herein. The first image/video data may be intended to be rendered on a display with certain characteristics—e.g., HDR, EDR, VDR or UHD capabilities. The second image/video data may comprise graphics, closed captioning, text, advertisement—or any data that may be desired to be overlaid and/or composited onto the first image/video data. The second image/video data may be appearance mapped according to the image statistics and/or characteristics of the first image/video data. In addition, such appearance mapping may be made according to the characteristics of the display that the composite data is to be rendered. Such appearance mapping is desired to render a composite data that is visually pleasing to a viewer, rendered upon a desired display.
Abstract:
In a method to reconstruct a high dynamic range video signal, a decoder receives a base layer standard dynamic range video signal, an enhancement layer video signal, a metadata bitstream for a reference processing unit and a CRC code related to the metadata. A decoder reconstructs a high-dynamic range video output signal based on the base layer video signal, the enhancement layer video signal, and the data syntax and metadata specified by the metadata bitstream.
Abstract:
Techniques use multiple lower bit depth (e.g., 8 bits) codecs to provide higher bit depth (e.g., 12+ bits) high dynamic range images from an upstream device to a downstream device. Multiple layers comprising a base layer and one or more enhancement layers may be used to carry video signals comprising image data compressed by lower bit depth encoders to a downstream device, wherein the base layer cannot be decoded and viewed on its own. Lower bit depth input image data to base layer processing may be generated from higher bit depth high dynamic range input image data via advanced quantization to minimize the volume of image data to be carried by enhancement layer video signals. The image data in the enhancement layer video signals may comprise residual values, quantization parameters, and mapping parameters based in part on a prediction method corresponding to a specific method used in the advanced quantization. Adaptive dynamic range adaptation techniques take into consideration special transition effects, such as fade-in and fade-outs, for improved coding performance.
Abstract:
Sample data and metadata related to spatial regions in images may be received from a coded video signal. It is determined whether specific spatial regions in the images correspond to a specific region of luminance levels. In response to determining the specific spatial regions correspond to the specific region of luminance levels, signal processing and video compression operations are performed on sets of samples in the specific spatial regions. The signal processing and video compression operations are at least partially dependent on the specific region of luminance levels.
Abstract:
A display management processor receives an input image with enhanced dynamic range to be displayed on a target display which has a different dynamic range than a reference display. The input image is first transformed into a perceptually-corrected IPT color space. A non-linear mapping function generates a first tone-mapped signal by mapping the intensity of the input signal from the reference dynamic range into the target dynamic range. The intensity (I) component of the first tone-mapped signal is sharpened to preserve details, and the saturation of the color (P and T) components is adjusted to generate a second tone-mapped output image. A color gamut mapping function is applied to the second tone-mapped output image to generate an image suitable for display onto the target display. The display management pipeline may also be adapted to adjust the intensity and color components of the displayed image according to specially defined display modes.
Abstract:
Systems and methods for overlaying a second image/video data onto a first image/video data are described herein. The first image/video data may be intended to be rendered on a display with certain characteristics—e.g., HDR, EDR, VDR or UHD capabilities. The second image/video data may comprise graphics, closed captioning, text, advertisement—or any data that may be desired to be overlaid and/or composited onto the first image/video data. The second image/video data may be appearance mapped according to the image statistics and/or characteristics of the first image/video data. In addition, such appearance mapping may be made according to the characteristics of the display that the composite data is to be rendered. Such appearance mapping is desired to render a composite data that is visually pleasing to a viewer, rendered upon a desired display.