Abstract:
Inter-color image prediction is based on multi-channel multiple regression (MMR) models. Image prediction is applied to the efficient coding of images and video signals of high dynamic range. MMR models may include first order parameters, second order parameters, and cross-pixel parameters. MMR models using extension parameters incorporating neighbor pixel relations are also presented. Using minimum means-square error criteria, closed form solutions for the prediction parameters are presented for a variety of MMR models.
Abstract:
Inter-color image prediction is based on multi-channel multiple regression (MMR) models. Image prediction is applied to the efficient coding of images and video signals of high dynamic range. MMR models may include first order parameters, second order parameters, and cross-pixel parameters. MMR models using extension parameters incorporating neighbor pixel relations are also presented. Using minimum means-square error criteria, closed form solutions for the prediction parameters are presented for a variety of MMR models.
Abstract:
Methods and systems for generating and applying scene-stable metadata for a video data stream are disclosed herein. A video data stream is divided or partitioned into scenes and a first set of metadata may be generated for a given scene of video data. The first set of metadata may be any known metadata as a desired function of video content (e.g., luminance). The first set of metadata may be generated on a frame-by-frame basis. In one example, scene-stable metadata may be generated that may be different from the first set of metadata for the scene. The scene-stable metadata may be generated by monitoring a desired feature with the scene and may be used to keep the desired feature within an acceptable range of values. This may help to avoid noticeable and possibly objectionably visual artifacts upon rendering the video data.
Abstract:
Inter-color image prediction is based on multi-channel multiple regression (MMR) models. Image prediction is applied to the efficient coding of images and video signals of high dynamic range. MMR models may include first order parameters, second order parameters, and crosspixel parameters. MMR models using extension parameters incorporating neighbor pixel relations are also presented. Using minimum means-square error criteria, closed form solutions for the prediction parameters are presented for a variety of MMR models.
Abstract:
Coding syntaxes in compliance with same or different VDR specifications may be signaled by upstream coding devices such as VDR encoders to downstream coding devices such as VDR decoders in a common vehicle in the form of RPU data units. VDR coding operations and operational parameters may be specified as sequence level, frame level, or partition level syntax elements in a coding syntax. Syntax elements in a coding syntax may be coded directly in one or more current RPU data units under a current RPU ID, predicted from other partitions/segments/ranges previously sent with the same current RPU ID, or predicted from other frame level or sequence level syntax elements previously sent with a previous RPU ID. A downstream device may perform decoding operations on multi-layered input image data based on received coding syntaxes to construct VDR images.
Abstract:
Methods and systems for generating and applying scene-stable metadata for a video data stream are disclosed herein. A video data stream is divided or partitioned into scenes and a first set of metadata may be generated for a given scene of video data. The first set of metadata may be any known metadata as a desired function of video content (e.g., luminance). The first set of metadata may be generated on a frame-by-frame basis. In one example, scene-stable metadata may be generated that may be different from the first set of metadata for the scene. The scene-stable metadata may be generated by monitoring a desired feature with the scene and may be used to keep the desired feature within an acceptable range of values. This may help to avoid noticeable and possibly objectionably visual artifacts upon rendering the video data.
Abstract:
A sequence of visual dynamic range (VDR) images is encoded using a standard dynamic range (SDR) base layer and one or more enhancement layers. A predicted VDR image is generated from an SDR input by using a weighted, multi-band, cross-color channel prediction model. Exponential weights with an adaptable decay parameter for each band are also presented.
Abstract:
In an embodiment, a source video signal comprising reference code values and mapping function parameters for one or more mapping functions to map the reference code values to device-specific pixel values. The reference code values and the mapping function parameters are combined into first video frames in a first video signal format. The mapping function parameters represent DM metadata carried in the first video frames. Second video frames in a second video signal format are generated based on the first video frames in the first video signal format and a mapping between the first video signal format and the second video signal format. The second video frames are sent to a video sink device through the video link in an encoded video signal of the second video signal format.
Abstract:
An encoder receives an input enhanced dynamic range (EDR) image to be stored or transmitted using multiple coding formats in a layered representation. A layer decomposer generates a lower dynamic range (LDR) image from the EDR image. One or more base layer (BL) encoders encode the LDR image to generate a main coded BL stream and one or more secondary coded BL streams, where each secondary BL stream is coded in a different coding format than the main coded BL stream. A single enhancement layer (EL) coded stream and related metadata are generated using the main coded BL stream, the LDR image, and the input EDR image. An output coded stream includes the coded EL stream, the metadata, and either the main coded BL stream or one of the secondary coded BL streams. Computation-scalable decoding and display management processes for EDR images are also described.
Abstract:
A sequence of visual dynamic range (VDR) images is encoded using a standard dynamic range (SDR) base layer and one or more enhancement layers. A predicted VDR image is generated from an SDR input by using a weighted, multi-band, cross-color channel prediction model. Exponential weights with an adaptable decay parameter for each band are also presented.