Abstract:
According to various embodiments, a mobile device continuously and/or automatically scans a user environment for tags containing non-human-readable data. The mobile device may continuously and/or automatically scan the environment for tags without being specifically directed at a particular tag. The mobile device may be adapted to scan for audio tags, radio frequency tags, and/or image tags. The mobile device may be configured to scan for and identify tags within the user environment that satisfy a user preference. The mobile device may perform an action in response to identifying a tag that satisfies a user preference. The mobile device may be configured to scan for a wide variety of tags, including tags in the form of quick response codes, steganographic content, audio watermarks, audio outside of a human audible range, radio frequency identification tags, long wavelength identification tags, near field communication tags, and/or a Memory Spot device.
Abstract:
Methods, apparatuses, computer program products, devices and systems are described that carry out receiving level-one encrypted data including at least one associated encrypted identifier; encrypting with a level-two encryption key at least a part of the level-one encrypted data to produce level-two encrypted data; receiving a hash of the at least one associated encrypted identifier; associating the hash with the level-two encrypted data; and transmitting the level-two encrypted data and associated hash of the at least one associated encrypted identifier.
Abstract:
Methods, apparatuses, computer program products, devices and systems are described that carry out accepting at least one identifier corresponding to a user having at least one instance of data for encryption; encrypting the at least one identifier corresponding to the user to produce at least one encrypted identifier, wherein the at least one encrypted identifier also corresponds to the at least one instance of data for encryption; and transmitting the encrypted identifier to an encryption entity.
Abstract:
Described embodiments include a system and a method. A system includes a first ultrasound transmitter acoustically coupled to a conducting layer of a display surface and configured to deliver a first ultrasound wave to a selected delineated area. The first ultrasonic wave has parameters sufficient to induce a non-linear vibrational response in the conducting layer. A second ultrasound transmitter is acoustically coupled to the conducting layer and configured to deliver a second ultrasound wave to the selected delineated area. The second ultrasonic wave has parameters sufficient to induce a non-linear vibrational response in the conducting layer. A controller selects a delineated area in response to an indication of a touch to the display surface, and initiates delivery of the first and second ultrasonic waves. A convergence of the first and second ultrasonic waves at the selected delineated area produces a stress pattern perceivable or discernible by the human appendage.
Abstract:
According to various embodiments, a mobile device continuously and/or automatically scans a user environment for tags containing non-human-readable data. The mobile device may continuously and/or automatically scan the environment for tags without being specifically directed at a particular tag. The mobile device may be adapted to scan for audio tags, radio frequency tags, and/or image tags. The mobile device may be configured to scan for and identify tags within the user environment that satisfy a user preference. The mobile device may perform an action in response to identifying a tag that satisfies a user preference. The mobile device may be configured to scan for a wide variety of tags, including tags in the form of quick response codes, steganographic content, audio watermarks, audio outside of a human audible range, radio frequency identification tags, long wavelength identification tags, near field communication tags, and/or a Memory Spot device.
Abstract:
A power supply system for a data center includes a cooling circuit, an electrochemical power generator, a sensor, and a processor. The cooling circuit includes a fluid configured to receive heat energy generated by a server located in the data center. The electrochemical power generator is configured to receive and/or generate the fluid of the cooling circuit and to generate electrical energy for the server using the fluid. The sensor is configured to obtain data regarding the server. The processor is configured to control an amount of heat energy transferred from the server to the fluid based on the data.
Abstract:
A power supply system for a data center includes a cooling circuit, an electrochemical power generator, a sensor, and a processor. The cooling circuit includes a fluid configured to receive heat energy generated by a server located in the data center. The electrochemical power generator is configured to receive and/or generate the fluid of the cooling circuit and to generate electrical energy for the server using the fluid. The sensor is configured to obtain data regarding the server. The processor is configured to control an amount of heat energy transferred from the server to the fluid based on the data.