Abstract:
A new class of efficient vacuum electronic devices (VEDs) for THz wave generation and amplification are disclosed. The EM circuits of these VEDs are micro-fabricated from Si wafers with high precision. The original design of the EM circuits overcomes the main limitations of existing THz VEDs constructed from metal or metallized components, such as low fabrication precision, high signal losses, low tolerance to electric breakdown and low beam efficiency. The disclosed VEDs may have up to 50% beam efficiency in the THz band.
Abstract:
A microelectromechanical light emitter component comprises an emitter layer structure of the microelectromechanical light emitter component and an inductive structure of the microelectromechanical light emitter component. The inductive structure of the microelectromechanical light emitter component is configured to generate current in the emitter layer structure by electromagnetic induction, such that the emitter layer structure emits light. The emitter layer structure is electrically insulated from the inductive structure.
Abstract:
An LED tube lamp includes a glass tube, two end caps, a power supply, and an LED light strip. The glass tube includes a main body region, two rear end regions, and two transition regions connecting the main body region and the rear end regions. The end cap is disposed at one end of the glass tube and the power supply is provided inside the end cap. The LED light strip is disposed inside the glass tube and has LED light sources disposed thereon. The LED light strip includes a bendable circuit sheet mounted on inner surface of the glass tube. The bendable circuit sheet of the LED light strip is formed with a freely extending end portion at one end, and the freely extending end portion is electrically connected to the power supply. The glass tube and the end cap are secured by a hot melt adhesive.
Abstract:
In various embodiments, a light-emitting apparatus is disclosed. In one example, the light-emitting apparatus comprises a substrate, an LED string mounted on the substrate, in which LED string a plurality of LEDs are connected in series, a power supply path connected in series to the LED string, and a plurality of protection elements, each protection element having a first node commonly connected to the power supply path and a second node connected between a pair of the LEDs in the series, wherein the protection elements include capacitors or zener diodes, and an AC impedance of each protection element is smaller than an impedance between the pair of LEDs and a case ground.
Abstract:
A light-emitting apparatus including a substrate, an LED string mounted on the substrate, the LED string in which a plurality of light-emitting diodes D1-D6 are connected in series, a power supply line 13 (13a, 13b) connected in series to the LED string, and a plurality of protection capacitors C (C1-C5), each being arranged between a connection N (N1-N5) between at least one set of light-emitting diodes in the LED string and the power supply line 13 and having an impedance smaller than an impedance between the connection N and an case ground.
Abstract:
A line voltage control circuit for use with a multi-string LED drive system which provides a common line voltage for multiple LED strings that are connected to respective current sink circuits at respective junctions. An error amplifier receives the minimum junction voltage and a reference ‘desired junction voltage’ at respective inputs, and a voltage regulator outputs the line voltage in response to a voltage applied to a feedback input. A comparator toggles an output when the maximum junction voltage (Vmax) exceeds a reference limit (Vlimit). A multiplexer receives the error amplifier output and a fixed voltage at respective inputs and provides one of the signals to the regulator's feedback input in response to the comparator output. When Vmax>Vlimit, the fixed voltage is provided to the feedback input and the line voltage is reduced, thereby protecting low voltage current sinks from potentially damaging high voltages.
Abstract:
Provided is an impedance matching apparatus for matching impedance to a plasma load. The impedance matching apparatus includes a first frequency impedance matching circuit unit that transfers an output of a first frequency RF power source unit, operating at a first frequency, to the plasma load; and a second frequency impedance matching circuit unit that transfers an output of a second frequency RF power source unit, operating at a second frequency higher than the first frequency, to the plasma load. The first frequency impedance matching circuit unit includes a T-type matching circuit, and the second frequency impedance matching circuit unit includes a standard L-type matching circuit or Π-type matching circuit.
Abstract:
An object of the present invention is to provide a fluorescent display tube with a touch switch allowing electrodes such as touch electrode, anode electrode, and wirings thereof to be formed on the same substrate at the same time, and having an easy structure, and to provide a method of forming the electrodes and wirings of the fluorescent display tube. The anode electrodes, the touch electrodes, the shield electrode, and the anode wirings are formed on the front substrate. The shield electrode is formed in between the touch electrodes and the anode electrodes, and in between the touch electrodes and the anode wirings. The shield electrode is made of a continuous single conductive film. The touch electrodes are so formed as to surround the corresponding one of the anode electrodes.
Abstract:
A metal halide lamp capable of delaying the rate of deformation in an electrostrictive phenomenon caused by the discharge of a ferroelectric ceramic capacitor when dielectric breakdown is initiated between the electrodes of an arc tube thereby preventing breakage accident, wherein a starting circuit, housed in parallel connection together with an arc tube in an outer tube of a metal halide lamp has in serial connection, a ferroelectric ceramic capacitor that is charged and discharged when a voltage at a predetermined coercive voltage or higher is applied thereby outputting a starting pulse at a high voltage from a ballast, a semiconductor switch that turns to a conduction state when a voltage of a predetermined breakover voltage or higher is applied, and a time constant control resistor that delays the discharge time of electric charges discharged from the capacitor when dielectric breakdown is initiated in the arc tube.
Abstract:
A high pressure discharge lamp lighting apparatus includes a high pressure discharge lamp and a power supply apparatus, wherein in a steady state lighting operation, an alternating current of a steady state lighting frequency and alternating current of a low frequency are supplied by turns to the high pressure discharge lamp, and wherein in a small electric power lighting in which electric power to be applied is smaller than that of the steady state lighting, alternating current of a small electric power lighting frequency and direct current are supplied by turns to the high pressure discharge lamp.