Abstract:
In a video capture system, a virtual lens is simulated when applying a crop or zoom effect to an input video. An input video frame is received from the input video that has a first field of view and an input lens distortion caused by a lens used to capture the input video frame. A selection of a sub-frame representing a portion of the input video frame is obtained that has a second field of view smaller than the first field of view. The sub-frame is processed to remap the input lens distortion to a desired lens distortion in the sub-frame. The processed sub-frame is the outputted.
Abstract:
In a video capture system, a virtual lens is simulated when applying a crop or zoom effect to an input video. An input video frame is received from the input video that has a first field of view and an input lens distortion caused by a lens used to capture the input video frame. A selection of a sub-frame representing a portion of the input video frame is obtained that has a second field of view smaller than the first field of view. The sub-frame is processed to remap the input lens distortion to a desired lens distortion in the sub-frame. The processed sub-frame is the outputted.
Abstract:
In a video capture system, a virtual lens is simulated when applying a crop or zoom effect to an input video. An input video frame is received from the input video that has a first field of view and an input lens distortion caused by a lens used to capture the input video frame. A selection of a sub-frame representing a portion of the input video frame is obtained that has a second field of view smaller than the first field of view. The sub-frame is processed to remap the input lens distortion to a desired lens distortion in the sub-frame. The processed sub-frame is the outputted.
Abstract:
In a video capture system, a virtual lens is simulated when applying a crop or zoom effect to an input video. An input video frame is received from the input video that has a first field of view and an input lens distortion caused by a lens used to capture the input video frame. A selection of a sub-frame representing a portion of the input video frame is obtained that has a second field of view smaller than the first field of view. The sub-frame is processed to remap the input lens distortion to a desired lens distortion in the sub-frame. The processed sub-frame is the outputted.
Abstract:
A unified image processing algorithm results in better post-processing quality for combined images that are made up of multiple single-capture images. To ensure that each single-capture image is processed in the context of the entire combined image, the combined image is analyzed to determine portions of the image (referred to as “zones”) that should be processed with the same parameters for various image processing algorithms. These zones may be determined based on the content of the combined image. Alternatively, these zones may be determined based on the position of each single-capture image with respect to the entire combined image or the other single-capture images. Once zones and their corresponding image processing parameters are determined for the combined image, they are translated to corresponding zones each of the single-capture images. Finally, the image processing algorithms are applied to each of the single-capture images using the zone-specified parameters.
Abstract:
A unified image processing algorithm results in better post-processing quality for combined images that are made up of multiple single-capture images. To ensure that each single-capture image is processed in the context of the entire combined image, the combined image is analyzed to determine portions of the image (referred to as “zones”) that should be processed with the same parameters for various image processing algorithms. These zones may be determined based on the content of the combined image. Alternatively, these zones may be determined based on the position of each single-capture image with respect to the entire combined image or the other single-capture images. Once zones and their corresponding image processing parameters are determined for the combined image, they are translated to corresponding zones each of the single-capture images. Finally, the image processing algorithms are applied to each of the single-capture images using the zone-specified parameters.
Abstract:
A spherical content capture system captures spherical video content. A spherical video sharing platform enables users to share the captured spherical content and enables users to access spherical content shared by other users. In one embodiment, captured metadata or video/audio processing is used to identify content relevant to a particular user based on time and location information. The platform can then generate an output video from one or more shared spherical content files relevant to the user. The output video may include a non-spherical reduced field of view such as those commonly associated with conventional camera systems. Particularly, relevant sub-frames having a reduced field of view may be extracted from each frame of spherical video to generate an output video that tracks a particular individual or object of interest.
Abstract:
Use of separate range tone mapping for combined images can help minimize loss of image information in scenes that have drastically different luminance values, i.e., scenes that have both bright and shadowed regions. Separate range tone mapping is particularly useful for combined images, such as those from spherical camera systems, which may have a higher probability of including luminance variability. The resulting increased bit depth of separate range tone mapping can make the transition between different images that make up a combined image more subtle. Each of a plurality of images that make up a combined image can use a different tone map that is optimized for the particular image data of the image. Multiple tone maps that are applied to overlapping regions of the plurality of images can subsequently be combined to expand the bit depth of the overlapping regions.
Abstract:
Multiple cameras are arranged in an array at a pitch, roll, and yaw that allow the cameras to have adjacent fields of view such that each camera is pointed inward relative to the array. The read window of an image sensor of each camera in a multi-camera array can be adjusted to minimize the overlap between adjacent fields of view, to maximize the correlation within the overlapping portions of the fields of view, and to correct for manufacturing and assembly tolerances. Images from cameras in a multi-camera array with adjacent fields of view can be manipulated using low-power warping and cropping techniques, and can be taped together to form a final image.
Abstract:
Multiple cameras are arranged in an array at a pitch, roll, and yaw that allow the cameras to have adjacent fields of view such that each camera is pointed inward relative to the array. The read window of an image sensor of each camera in a multi-camera array can be adjusted to minimize the overlap between adjacent fields of view, to maximize the correlation within the overlapping portions of the fields of view, and to correct for manufacturing and assembly tolerances. Images from cameras in a multi-camera array with adjacent fields of view can be manipulated using low-power warping and cropping techniques, and can be taped together to form a final image.