Abstract:
Disclosed is process for the production of (E) 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd(E)) by conducting a continuous reaction without the use of a catalyst. Also disclosed is an integrated system for producing hydrofluoro olefins, particularly 1233zd(E). The manufacturing process includes six major unit operations: (1) a fluorination reaction of HCC-240fa (in continuous or semi-batch mode) using HF with simultaneous removal of by-product HCl and the product 1233zd(E); (2) recycle of unreacted HCC-240fa and HF together with under-fluorinated by-products back to (1); (3) separation and purification of by-product HCl; (4) separation of excess HF back to (1); (5) purification of final product, 1233zd(E); and (6) isomerization of by-product 1233zd(Z) to 1233zd(E) to maximize the process yield.
Abstract:
The present invention relates to an azeotropic or azeotrope-like mixture consisting essentially of 1,1,1,2,3,3-hexafluoropropane, hexafluoropropene and hydrogen fluoride.
Abstract:
Provided are azeotropic or azeotrope-like mixtures of 1,3,3,3-tetrachloroprop-1-ene (HCO-1230zd) and hydrogen fluoride. Such compositions are useful as a feed stock in the production of HFC245fa and HCFO1233zd.
Abstract:
Azeotropic or azeotrope-like mixtures of 1,3,3-trichloro-3-fluoroprop-1-ene (HCFO-1231zd) and hydrogen fluoride (HF). Such compositions are useful as a feed stock or intermediate in the production of 1,1,1,3,3-pentafluoropropane (HFC-245fa),1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), and 1,3,3,3-tetrafluoropropene (HFO-1234ze).
Abstract:
The invention relates to a separation process whereby 2-chloro-3,3,3-trifluoropropene (1233xf) is separated from a mixture containing other fluorinated organics and high boiling materials such as dimers using azeotropes of HF formed by adding appropriate amounts to the mixture which facilitate separation by, e.g. distillation.
Abstract:
Disclosed are processes for a high temperature isomerization reaction converting (E)-1-chloro-3,3,3-trifluoropropene to (Z)-1-chloro-3,3,3-trifluoropropene. In certain aspects of the invention, such a process includes contacting a feed stream with a heated surface, where the feed stream includes (E)-1-chloro-3,3,3-trifluoropropene or mixture of (E)-1-chloro-3,3,3-trifluoropropene with (Z)-1-chloro-3,3,3-trifluoropropene. The resulting product stream includes (Z)-1-chloro-3,3,3-trifluoropropene and (E)-1-chloro-3,3,3-trifluoropropene, where the ratio of (Z) isomer to (E) isomer in the product stream is higher than the ratio feed stream. The (E) and (Z) isomers in the product stream may be separated from one another.
Abstract:
The present invention is directed to processes for the production of 1233zd from 240fa and HF, with or without a catalyst, at a commercial scale. The 240fa and HF are fed to a reactor operating at high pressure. The resulting product stream comprising 1233zd, HCl, HF, and other byproducts is treated to one or more purification techniques including phase separation and one or more distillations to provide purified 1233zd, which meets commercial product specifications, i.e., having a GC purity of 99.5% or greater.
Abstract:
Provided are azeotropic or azeotrope-like mixtures of 1,3,3-trichloro-1,1-difluoro-propane (HCFC-242fa) and hydrogen fluoride. Such compositions are useful as a feed stock or intermediate in the production of HFC-245fa and HCFO-1233zd.
Abstract:
Provided are methods for forming azeotropic or azeotrope-like mixtures of 1,1,1,3,3-pentachloro-propane (240fa) and hydrogen fluoride. Such compositions are useful as an intermediate in the production of HFC-245fa and HCFO-1233zd.
Abstract:
The present invention discloses methods to produce cis-1-chloro-3,3,3-trifluoropropene in high yield by the isomerization of trans-1-chloro-3,3,3-trifluoropropene. These isomers are also known as 1233zd(Z) and 1233zd(E), respectively. This is done by using reactive distillation whereby as cis-1-chloro-3,3,3-trifluoropropene is produced, it is removed from the reaction zone. This product removal causes a shift in the thermodynamic equilibrium of the reaction system, forcing the production of additional cis isomer.