Abstract:
Soft information for achieving interference cancellation in downlink transmissions can be communicated over device-to-device (D2D) links, thereby allowing paired user equipments (UEs) to receive downlink transmissions over the same radio resources. More specifically, paired UEs that receive transmissions over the same time-frequency resources may exchange soft or hard information over D2D links in order to facilitate interference cancellation. The D2D links may be unidirectional or bidirectional, and may be established over in-band or out-of-band resources. Paired UEs may be in the same or different cells, and may receive their respective transmissions from the same or different transmit point. UEs may be paired with one another based on various criteria, e.g., interference cancellation capabilities, scheduling metrics, etc.
Abstract:
A method and a device for adaptive channel access are disclosed. In an embodiment includes adaptively adjusting, by a small base station (SBS), access parameters for small cells to ensure quality of service (QoS) to cellular users while minimizing collision probability for WiFi users.
Abstract:
Assigning traffic to be transported over either the primary band or the complementary band of a unified air interface based on quality of service (QoS) constraints of the traffic may allow for improved network resource utilization efficiency. In one example, traffic having deterministic QoS constraints is assigned to the primary band, while traffic having statistical QoS constraints is assigned to the complementary band when the complementary band is capable of satisfying the statistical QoS constraints of the traffic. If a condition on the complementary band prevents it from satisfying the statistical QoS constraint of the traffic, then the traffic is assigned to the primary band.
Abstract:
Performing wireless transmissions over a unified air interface that span portions of both the primary band and the complementary band may provide improved throughput and spectral efficiency in next generation networks. Wireless transmissions spanning both the licensed and unlicensed spectrum carry data in different frame formats over the respective primary and complementary bands. For example, frames communicated over the primary band may have a different channel structure (e.g., different size, placement, orientation, etc.) than frames communicated over the complementary band. Wireless transmissions spanning the licensed and unlicensed spectrum may also utilize different access schemes and/or waveforms over the respective primary and complementary bands. Embodiment unified air interfaces may be dynamically configurable via software defined radio (SDR) signaling instructions.
Abstract:
An integrated terrestrial/non-terrestrial network may allow for enhanced network coverage. However, there are control and management challenges associated with an integrated terrestrial/non-terrestrial network because the network and user equipments (UEs) are no longer confined to only using conventional cellular communication via terrestrial transmit-and-receive points (T-TRPs). One challenge is how to perform beam management. In some embodiments, methods and systems are disclosed in which an indication of angular direction (e.g. beam direction) is provided by the T-TRP. The indication of angular direction may be used by a UE for communicating with a non-terrestrial TRP (NT-TRP), e.g. using beamforming. However, the methods are not limited to integrated terrestrial/non-terrestrial networks or the involvement of NT-TRPs, but apply more generally to indicating angular direction for directional communication.
Abstract:
A method for power control for uplink transmission is provided. In an embodiment, a method in a user equipment (UE) for reference signal (RS) relationship specific uplink (UL) transmission power control includes transmitting, by the UE, a first UL signal according to a first power control set including at least one of a first target power, a second target power, a DL reference signal (RS) for pathloss estimation, a pathloss compensation factor, and a transmit power command (TPC). The first power control set is determined according to a first RS relationship between one first RS and a first UL signal.
Abstract:
A beam alignment direction for a beam defined between a transmitter and a receiver can be adjusted by causing adjustments in the location (in altitude, in two-dimensional coordinates, or in both) of one or both of the transmitter and the receiver, where the adjustment in the location is carried out at whichever node among the transmitter and the receiver is an aerial node. In case it is determined that the beam alignment direction cannot be maintained in a desired range, a transmit receive point switching may be triggered before a beam failure happens.
Abstract:
Some embodiments of the present disclosure introduce dynamic capability extension and reduction for sensing-assisted mobility management. Capabilities of mobile communication devices may be dynamically extended and reduced to the benefit of sensing-assisted mobility management procedures carried out at a serving device. The mobile communication device may become associated with an object fitted with a plurality of sensors. The mobile communication device may report, to a serving device, an extended set of capabilities. The serving device may respond by providing, to the mobile communication device, configuration details for at least some of the sensors. Upon receipt, from the mobile communication device, of sensor measurement data, the serving device may be empowered to make sensor-data enhanced mobility management decisions.
Abstract:
A base station may transmit downlink control information (DCI) scheduling communications between the base station and a UE. The DCI is in a fallback DCI format. Based on whether or not the DCI is in a UE specific search space with cyclic redundancy check (CRC) scrambled by a UE ID of the UE, data transmitted by the base station or by the UE according to the DCI may be scrambled by a sequence that is initialized with a configurable parameter, or initialized with a cell ID.
Abstract:
According to embodiments, an apparatus receives beam failure detection reference signals on a plurality of beam pair links. The apparatus detects beam failure on at least some of the plurality of beam pair links. Responsive to a quantity of beam pair links on which the beam failure has been detected exceeding a predetermined quantity of beam pair links and being less than a total quantity of the plurality of beam pair links, the apparatus establishes a new beam pair link on a candidate beam.