摘要:
Provided is a backlight unit of an LCD device including a printed circuit board; a plurality of light emitting diodes (LEDs) mounted on the printed circuit board; and a bottom chassis formed with only an outer frame and having the printed circuit board housed thereon.
摘要:
A backlight unit for a liquid crystal display (LCD) device, disposed under a liquid crystal panel to illuminate the liquid crystal panel. The backlight unit includes a light guide plate, first and second light emitting diode (LED) arrays, disposed on adjacent sides, perpendicular to each other, of the light guide plate, each array having a plurality of LED blocks, consisting of one or more LEDs, and a control unit that controls electric signals, respectively inputted to the LED blocks, to regulate luminance for the respective LED blocks, wherein light emitted from the first and second LED arrays is overlapped each other in the light guide plate.
摘要:
A white LED module includes a circuit board, a blue LED chip disposed on the circuit board, a green light source of an LED chip or phosphor disposed on the circuit board, and a red light source of an LED chip or phosphor disposed on the circuit board. At least one of the green and red light sources is a phosphor, which is excited by the blue LED chip to radiate. The blue LED chip emits light in a triangular region defined by color coordinates (0.0123, 0.5346), (0.0676, 0.4633) and (0.17319, 0.0048), the green light source emits light in a triangular region defined by color coordinates (0.025, 0.5203), (0.4479, 0.541) and (0.0722, 0.7894), and the red light source emits light in a triangular region defined by color coordinates (0.556, 0.4408), (0.6253, 0.3741) and (0.7346, 0.2654).
摘要:
A backlight unit for a liquid crystal display (LCD) device, disposed under a liquid crystal panel to illuminate the liquid crystal panel. The backlight unit includes a light guide plate, first and second light emitting diode (LED) arrays, disposed on adjacent sides, perpendicular to each other, of the light guide plate, each array having a plurality of LED blocks, consisting of one or more LEDs, and a control unit that controls electric signals, respectively inputted to the LED blocks, to regulate luminance for the respective LED blocks, wherein light emitted from the first and second LED arrays is overlapped each other in the light guide plate.
摘要:
There is provided a surface light source using white light emitting diodes including: a plurality of white light emitting diodes arranged at a predetermined distance from one another, wherein the white light emitting diodes are arranged such that a light emitting diode unit defined by each of the white light emitting diodes and corresponding ones of the white light emitting diodes disposed at a closest distance from the each white light emitting diode has a central light amount ranging from 80% to 120% with respect to an average light amount of the white light emitting diodes.
摘要:
There is provided a surface light source using white light emitting diodes including: a plurality of white light emitting diodes arranged at a predetermined distance from one another, wherein the white light emitting diodes are arranged such that a light emitting diode unit defined by each of the white light emitting diodes and corresponding ones of the white light emitting diodes disposed at a closest distance from the each white light emitting diode has a central light amount ranging from 80% to 120% with respect to an average light amount of the white light emitting diodes.
摘要:
There is provided a surface light source using white light emitting diodes including: a plurality of white light emitting diodes arranged at a predetermined distance from one another, wherein the white light emitting diodes are arranged such that a light emitting diode unit defined by each of the white light emitting diodes and corresponding ones of the white light emitting diodes disposed at a closest distance from the each white light emitting diode has a central light amount ranging from 80% to 120% with respect to an average light amount of the white light emitting diodes.
摘要:
A white LED module includes a circuit board, a blue LED chip disposed on the circuit board, a green light source of an LED chip or phosphor disposed on the circuit board, and a red light source of an LED chip or phosphor disposed on the circuit board. At least one of the green and red light sources is a phosphor, which is excited by the blue LED chip to radiate. The blue LED chip emits light in a triangular region defined by color coordinates (0.0123, 0.5346), (0.0676, 0.4633) and (0.17319, 0.0048), the green light source emits light in a triangular region defined by color coordinates (0.025, 0.5203), (0.4479, 0.541) and (0.0722, 0.7894), and the red light source emits light in a triangular region defined by color coordinates (0.556, 0.4408), (0.6253, 0.3741) and (0.7346, 0.2654).
摘要:
A backlight unit suitable for realizing a high-quality image. The backlight unit according to the present invention is a direct type, which is disposed under a liquid crystal panel to irradiate light to a back surface of the liquid crystal panel. The backlight unit includes a light source unit having a plurality of light source regions formed on a substrate, each of the light source regions driven separately and having at least one light emitting diode. The backlight unit also includes partitions provided on the substrate and disposed between the light source regions of the light source unit, and a circuit for controlling and driving the light source unit.
摘要:
The present invention relates to a dipolar LED and a dipolar LED module incorporating the same, in which an upper hemisphere-shaped base houses an LED chip therein and adapted to radiate light from the LED chip to the outside, and a pair of reflecting surfaces placed at opposed top portions of the base in a configuration symmetric about an imaginary vertical plane. The vertical plane passes through the center of the LED chip perpendicularly to a light-emitting surface of the LED chip. The reflecting surfaces are extended upward away from the top portions of the base to reflect light from the LED chip away from the imaginary vertical plane. A pair of radiating surfaces are placed outside the reflecting surfaces, respectively, to radiate light from the reflecting surfaces to the outside. In this way, light emission from the LED chip can be concentrated in both lateral directions.