Abstract:
An optical network component, architecture and method for a wavelength division multiplexed passive optical network includes a band coupler configured to demultiplex first and second wavelength division multiplexed content transmitted from an optical line terminal into a first band signal and a second band signal. An arrayed wavelength grating is configured to receive the first band signal and to further demultiplex the first band signal into different wavelengths to provide a plurality of wavelength signals. An optical splitter is configured to split the second band signal into sub-signals and multiplex the sub-signals with each of the wavelength signals such that the first and second wavelength division multiplexed content is provided on a single wavelength to a user.
Abstract:
A method of generating a multi-subcarrier optical signal is disclosed. A local oscillator oscillates one or more data signals to generate one or more oscillating data signals. A series of modulators phase modulate a lightwave to generate a phase modulated lightwave, wherein the series of modulators are driven by the one or more oscillating data signals. The intensity modulator modulates the phase modulated lightwave, the intensity modulator being driven by one of the oscillating data signals, to generate the multi-subcarrier optical signal.
Abstract:
A companding transform technique is incorporated into orthogonal frequency division multiplexed signals to reduce the peak-to-average ratio of the signals. Prior to the companding transform, an inverse discrete Fourier transform is performed on the signal. Following the companding transform, the signal is compressed, at which point the compressed signal may be advantageously optically transmitted.
Abstract:
Data is transmitted between a central office and customer premises by a wavelength division multiplex passive optical network. Two laser beams with separate wavelengths are transmitted from the central office to an optical network unit in the customer premises. Both laser beams carry downstream data. One laser beam is intensity modulated by on/off keying. The other laser beam is phase modulated by differential phase shift keying, which maintains a constant optical intensity. The first laser beam is received by a first optical receiver, which demodulates the first downstream data. The second laser beam is split in two. One laser beam is sent to a second optical receiver, which demodulates the second downstream data. The other laser beam is sent to a reflective semiconductor amplifier, which modulates the beam with upstream data and transmits the beam back to a receiver in the central optical system.
Abstract:
Methods and systems for receiving an optical signal using cascaded frequency offset estimation. Coherently detecting an optical signal includes compensating for a coarse laser frequency offset between a transmitting laser and a local oscillator laser by determining a maximum phase error (MPE) in the optical signal, compensating for a residual laser frequency offset between the transmitting laser and the local oscillator laser, and decoding data stored in the optical signal.
Abstract:
A method of generating a dark-RZ pulse in an optical communications system with a dual-arm modulator by setting a direct current bias on the modulator to a specific value such that an output optical power from the modulator achieves a maximum value when the RF signals on the first and second arms of the modulator are off and maintaining the direct current bias at the specific value and applying RF signals to the first and second arms of the modulator and delaying one of the RF signals applied to one of the first and second arms relative to the other of the RF signals such that a dark-RZ pulse is generated with a duty cycle based on the delay. Another aspect of the invention provides a method for generating dense wave division multiplexing (DWDM) optical mm-waves in an optical transmission system by phase modulated DWDM optical signal and applying the phase modulated DWDM optical signal to an input port of an optical interleaver, the optical interleaver having a specified bandwidth to suppress the optical carriers and convert the DWDM optical signal to DWDM optical mm-waves; and amplifying the DWDM optical mm-waves and transmitting the DWDM optical mm-waves over single mode fiber (SMF).
Abstract:
A method includes generating at least two lightwave carriers from a lightwave source, the carriers having a wavelength spacing, creating an up-subchannel and a down-subchannel orthogonal to one another and spaced apart based on the fixed wavelength spacing from modulations of the lightwave carriers according to respective up-converted OFDM signals that are carrier suppressed, and combining one lightwave from the up-subchannel and one lightwave from the down-subchannel into an optical channel for transmission over an optical fiber.
Abstract:
A method includes modulating lightwaves to provide first and second OFDM signal sidebands at a first polarization direction and first and second OFDM signal sidebands at a second polarization direction, and combining sidebands that are oppositely positioned and joined from the first and second OFDM signal sidebands at each polarization direction to provide a polarization multiplexing OFDM signal.
Abstract:
A method includes generating an optical millimeter wave signal for modulation of a first data signal, and deriving from the generated optical millimeter wave signal a subsequent light source for modulation of a second data signal. More specifically the generating includes modulating a light wave to a multiple of a frequency of an oscillating signal. Alternatively, the generating includes modulating a data signal mixed with an oscillating signal to a multiple of a frequency of the oscillating signal. The deriving includes modulating a frequency component filtered from a data modulation of the generated optical millimeter wave signal.
Abstract:
An optical network component, architecture and method for a wavelength division multiplexed passive optical network includes a band coupler configured to demultiplex first and second wavelength division multiplexed content transmitted from an optical line terminal into a first band signal and a second band signal. An arrayed wavelength grating is configured to receive the first band signal and to further demultiplex the first band signal into different wavelengths to provide a plurality of wavelength signals. An optical splitter is configured to split the second band signal into sub-signals and multiplex the sub-signals with each of the wavelength signals such that the first and second wavelength division multiplexed content is provided on a single wavelength to a user.