摘要:
A semiconductor memory device is provided which includes a voltage detecting unit configured to compare a target voltage level with a fed-back internal voltage to output a detection signal in a normal mode, a driving unit configured to selectively drive an internal voltage terminal to a first or second power supply voltage according to an operation mode in response to the detection signal, and an enable control unit configured to control the driving unit in response to a control signal corresponding to the operation mode.
摘要:
A semiconductor device includes: a first reference voltage generator for generating a first reference voltage; a first band gap circuit for dividing a voltage at a second reference voltage output node to produce a first and a second band gap voltages having a property relative to temperature variations; a first comparator for receiving the first reference voltage as a bias input and comparing the first band gap voltage with the second band gap voltage; and a first driver for pull-up driving the second reference voltage output node in response to an output signal of the first comparator.
摘要:
Herein, a voltage sensing circuit, which is capable of controlling a pumping voltage to be stably generated in a low voltage environment, is provided. The voltage sensing circuit includes a current mirror having first and second terminals, a first switching element configured to control current on the first terminal of the current mirror by a reference voltage, a second switching element configured to control current from the second terminal of the current mirror in response to a pumping voltage, and a third switching element configured to control current sources of the first and second switching elements to receive a negative voltage.
摘要:
A semiconductor memory device is capable of measuring internal voltages via a shared pad to reduce a chip size. The semiconductor memory device includes a selector and a monitoring pad. The selector is configured to select one of a plurality of internal signals in response to a test signal and output the selected internal signal. The monitoring pad is configured to output an output signal of the selector to an outside of the semiconductor memory device.
摘要:
A semiconductor memory apparatus includes: a driving controller that decodes bank activating signals to generate a plurality of driving control signals, activates some of the driving control signals, and outputs the activated driving signals; and a plurality of internal voltage generators each of which outputs an internal voltage in response to a reference voltage and the corresponding driving control signal and is disposed between two different banks among a plurality of banks.
摘要:
A semiconductor memory apparatus includes an active signal generation unit that generates a plurality of active signals having different enable timings in response to a refresh signal, a precharge signal generation unit that delays at least one of the active signals to generate at least one precharge signal for enabling at least two equalizer signals at the same time, and a sense amplifier driver control unit that generates the plurality of equalizer signals for controlling individual sense amplifier drivers in response to the plurality of active signals and the precharge signal.
摘要:
A reference voltage supplying circuit can include an internal reference voltage generating unit configured to generate an internal reference voltage, a pad configured to receive an external reference voltage, a switching unit selectively configured to supply the internal reference voltage or the external reference voltage to an internal voltage generator in a test mode.
摘要:
A semiconductor memory device includes a bit line sense amplifier for sensing and amplifying data applied on a bit line; a first driver for driving a pull-up voltage line of the bit line sense amplifier to a voltage applied on a normal driving voltage terminal; an overdriving signal generator for generating an overdriving signal defining an overdriving period in response to an active command; an overdriving control signal generator for receiving the overdriving signal to generate an overdriving control signal for selectively performing an overdriving operation according to a voltage level of an overdriving voltage; and a second driver for driving the normal driving voltage terminal to the overdriving voltage in response to the overdriving control signal.
摘要:
A write driver of a semiconductor memory device over drives a local input/output line at a write operation in order to transmit data provided in a global input/output line to a core area at a stable voltage level. Therefore the write driver charges a stable voltage level corresponding to data inputted at the write operation in a cell capacitor. The write driver includes a pull-up/pull-down driver for pull-up/pull-down driving a second data line depending on data loaded on a first data line, a pulse generation circuit for generating pull-up over driving pulses activated for a predetermined time period at the initial time of an interval that the second data line is pull-up driven, and an over driver for pull-up driving the second data line by an over driving voltage higher than a pull-up voltage of the pull-up/pull-down driver in response to the pull-up over driving pulses.
摘要:
A semiconductor memory device can stabilize a voltage level of a normal driving voltage terminal in a normal driving operation, which is performed after an overdriving operation, even when an overdriving voltage is unstable due to environmental factors of the semiconductor memory device in the overdriving operation. The semiconductor memory device includes a bit line sense amplifier for performing an amplification operation using a normal driving voltage or an overdriving voltage to sense and amplify data applied to bit lines, a normal driving voltage compensator configured to drive a normal driving voltage terminal according to a voltage level of the normal driving voltage terminal and target normal driving voltage levels, and a discharge enable signal generator configured to generate a discharge enable signal by adjusting an activation period of the discharge enable signal according to the overdriving voltage.