Abstract:
An overcurrent protection circuit of a switching power supply apparatus, wherein a rectangular wave voltage is formed from an input voltage by the ON/OFF operation switching means, and an output voltage is formed by smoothing the rectangular wave voltage by using an inductance device and a capacitor, restricts overcurrent by detecting the peak current of a current flowing through the switching means and by using an input voltage Vin, an output voltage Vout and a voltage proportional to the ON/OFF ratio D of the switching means.
Abstract:
The present invention relates to a movement sequence determining method of obtaining a preferred solution of movement sequence within a predetermined time and an apparatus for realizing it so that a movement sequence, indicating a visit order of plural process areas having degrees of freedom in scan directions of local areas being objects of a predetermined process of exposure, inspection, or the like, can be achieved in a shortest time. The method comprises at least an arithmetic step of generating a group including plural movement sequences that can be carried out, out of a group of movement sequence candidates, each indicating a visit order of plural process areas as well as scan directions of local areas in the plural process areas, and selecting a movement sequence in which a movement operation between plural process areas is completed in a shortest time, from the group generated, and a prestep of producing a movement time management table storing movement times, each from a movement start position to a movement end position, in unit lengths between process areas. Accordingly, a resultant solution of movement sequence includes information concerning the visit order of process areas and the scan direction of each process area. The apparatus comprises at least an arithmetic section for carrying out the arithmetic step, and a memory for storing the movement time management table.
Abstract:
A conventional problem is to provide an optical module capable of being reflow mounted together with electronic components collectively, and, at the same time, securing a mechanical strength that can bear a large stress at the time of an attachment/detachment of the optical fiber. A solution to the above-mentioned problem can be attained by using an optical connector removable type optical module for reflow mounting having a fixing structure for fixing itself to a mount board, including a receptacle part installed to an optical module 19 to which an optical connector 1 is detachably connected; electric terminals 4 for reflow mounting that are arranged corresponding to lands 8 on a mount board 6; and stud parts 5 that are able to fit in fixing holes 7 on the mount board 6.
Abstract:
In an isolation type DC-DC converter for performing full-wave rectification in the secondary of a transformer, two switching sections 11 and 13 alternately switch ON and OFF, thereby reversing the current I3 flowing through a primary winding 3a of the transformer 3. A switching control circuit 7 outputs switching signals G1 and G3 to the switching sections 11 and 13, respectively, thereby controlling the switching of the switching sections. A load current sensing section 9 senses the amount of load current, then compares it with a predetermined threshold value. When the amount of load current sensed is smaller than the threshold value, a delay circuit 8 delays the switching signals G1 and G3 to the switching sections 11 and 13 for a predetermined delay time. The delay time is set to be substantially equal to ¼ of the resonance period determined by the self-inductance of the primary winding 3a of the transformer 3.
Abstract:
A direct current output voltage is switched by two switching units and a current alternately changing directions is supplied to a primary winding of a transformer. An alternating voltage induced in a secondary winding of the transformer is rectified and smoothed, and is applied to a control circuit. A bidirectional switching unit is connected in parallel with the primary winding, and is controlled by the control circuit so that the primary winding is short-circuited by the bidirectional switching unit and an exciting energy of the transformer is held continuously.
Abstract:
An optical fiber complex overhead line including a spacer formed with a plurality of helical grooves in its outer periphery extending along the axial direction, each helical groove shaped to be able to accommodate at least two bundles of multi-core type optical fiber in the width direction of the groove, at least two bundles of multi-core type optical fiber accommodated in each of the helical grooves, a protective optical fiber covering accommodating the spacer, and a plurality of conductor strands arranged around the protective optical fiber covering.
Abstract:
A laser marking apparatus, capable of marking at a high scanning speed, effectively utilizing a laser power, and providing high marking accuracy, irradiates an incident laser beam from a laser beam source onto a marking surface by raster-scanning through a raster scanning system. The raster scanning system includes an X-direction polarizing mirror, a Y-direction polarizing mirror, a field lens, and a mask. A double polarizing prism, which includes a pair of polarizing prisms (13a, 13b) for branching the incident laser beam (1) into twin laser beams, is arranged in series at an intermediate position between the laser beam source (2) and the upstream one of the X-direction polarizing mirror (3) and the Y-direction polarizing mirror (8). An adjusting means is provided to vary the distance between the two polarizing prisms (13a, 13b) or to rotate one or both of the polarizing prisms (13a, 13b) to vary the rotation angle by rotating one of the twin laser beams around the other, to thereby vary the distance between the centers of the twin laser beams as they irradiate the mask.