摘要:
An optical device integrated head having high light utilizing efficiency by decreasing the propagation loss caused from an optical source to a recording medium, conducting by mounting according to compact active alignment method for efficiently guiding a light generated from a laser device to the top end of a head, in which a light source device mounted on a submount has a mirror portion having an inclinated surface to at least a portion of one edge thereof for reflecting an output light from the optical source device at the inclinated surface, a structural member including a lens structure for further allowing a light to pass through the submount, and an optical waveguide disposed passing through a slider for mounting the submount, and the optical source and the slider are positioned by using active alignment of light in a chip-on carrier structure having the optical source device mounted on the submount.
摘要:
The present invention provides a method for high precision alignment of a surface emitting laser and a lens in an optical module in which optical coupling between a surface emitting laser and other optical devices such as an optical fiber is realized via lenses, and a structure for providing the method. A lens member 101, in which the lenses 105 are arrayed at a depth t1 from a reference plane 102 and an alignment mark is provided at a depth t2 (t1
摘要:
To provide an optical transceiver module comprising an optical prism for optical communications which has mounting portions, a light emitting portion, light receiving portions, a substrate and a sub-mount that are used as the basis of the optical transceiver module, whose configuration is compact with reduced components which are accurately mounted.A sub-mount is provided on the substrate. The composite optical prism is formed with an optical lens provided with mounting supports and a wavelength division film in an integrated fashion. By using marks on the sub-mount for alignment, the composite optical prism can be mounted accurately on the sub-mount. In addition, the light receiving portions and the light emitting portion can be mounted accurately by using marks for alignment provided on the substrate and the sub-mount.
摘要:
A water-dispersible sheet for cigarettes and a cigarette using the sheet are described. The sheet comprises a water-resolvable base paper and a water-dispersible coating layer containing water-soluble polymer formed on the surface of the base paper, whereby the sheet is adjusted to have an air-permeability of not more than 200 coresta measured with a paper permeability meter, or to have an air-resistance within the range of 0 to 50000 second/100 ml measured with an Oken type air-resistance tester. The water-resolvable base paper is made from fibrous raw materials containing not less than 20% by weight of water-dispersible fibers having fiber dimensions of a l/D value of 0.45 or lower and a L/D value of 60 or lower and a water-retention value of 95% or lower. The sheet is suitable for use as filter joining paper or filter plug wrap for cigarettes.
摘要:
To provide an optical transceiver module comprising an optical prism for optical communications which has mounting portions, a light emitting portion, light receiving portions, a substrate and a sub-mount that are used as the basis of the optical transceiver module, whose configuration is compact with reduced components which are accurately mounted.A sub-mount is provided on the substrate. The composite optical prism is formed with an optical lens provided with mounting supports and a wavelength division film in an integrated fashion. By using marks on the sub-mount for alignment, the composite optical prism can be mounted accurately on the sub-mount. In addition, the light receiving portions and the light emitting portion can be mounted accurately by using marks for alignment provided on the substrate and the sub-mount.
摘要:
A photoelectric integrated circuit device, in which photonic devices provided on the same substrate as the LSI are densely arranged along the four sides of the LSI, and characteristic degradation of the laser diode or photo detector due to heat generation can be prevented, furthermore optical wiring is easily performed on the board. A quadrilateral package substrate 11; an LSI package 13 mounted on the package substrate 11; photonic devices 12 mounted along two or more sides of the LSI package 13; first photonic devices electrically connected to I/O terminals disposed on one side of the LSI package 13; second photonic devices electrically connected to I/O terminals disposed on a different side of the LSI package 13; first optical waveguides for connecting between the optical signal I/O terminals of the first photonic devices and an external component or device; and second optical waveguides for connecting between the optical I/O terminals of the second photonic devices and an external component or device; wherein the first and second optical waveguides are terminated on the same side edge of the package substrate 11.
摘要:
In aiming at cost lowering of an optical module and an optical transmission apparatus and with the objective of providing a semiconductor light receiving element that has a good coherence with the other edge emitting/incidence type optical devices and is capable of performing the positioning easily and with a high accuracy, in the edge emitting/incidence type light receiving element in which the light absorbing layer 19 has been formed, the space region is formed so as to provide at least 100 &mgr;m2 of the marker detecting region 24, thereby facilitating detection of marker 23 on the optical device 26 and executing the positioning of the light receiving element with a high accuracy, the space region resulting from eliminating a part of the light absorbing layer 19 that absorbs the detection light of the light receiving element, the transmission amount of the detection light toward the marker detecting region that is parallel to a primary plane being equal to 30% or higher, the detection light having penetrated and transmitted the primary plane of the light receiving element.
摘要:
An optical assembly structure includes, a semiconductor element generating a large amount of heat and a high impedance optical element which are to be mounted, with low optical loss on the same semiconductor substrate which has an optical waveguide formed thereon.The element generating a large amount of heat is mounted on a terrace of the semiconductor substrate directly or through an insulating layer having a thickness of submicron order, while the high impedance element is mounted in a groove which is etched into the semiconductor substrate to such an extent that the optical axis of the high impedance element mates with the optical axis of the optical waveguide layer formed on a recess in the semiconductor substrate. The optical axes can be adjusted independently for the respective elements. Alternatively, with a potential on the semiconductor substrate set equal to a supply voltage or a ground potential, a crystal substrate for a forward biased heat generating element is given the polarity opposite to that of a crystal substrate for a reverse biased element which may imply a problem of stray capacitance.
摘要:
An object of the present invention is to provide a technique making it possible to easily manufacture a multi-channel optical module in which optical elements are air-sealed.In the optical module, a package 111 with optical elements mounted thereon is sealed with a transparent plate 109. Above a sealing window of the package, a lens plate 105 having holes 104 or grooves 201 and engagement pins 101 are engaged and optically aligned with each other.
摘要:
There are provided a substrate mounted with a photoelectric hybrid circuit having an optical path conversion mirror structure and optical waveguide wiring by reducing the number of parts and the number of fabrication steps, as well as most effectively implement high-density wiring for an optical connection between the optical waveguide and the photoelectric conversion element or optical waveguide array connector that are formed on the substrate, and a device. An optical waveguide layer 12 stacked on a substrate 10 and formed of a wiring core surrounded by a clad layer 11, and cores 15, 16 having tapered surfaces intersecting the respective wiring cores 13, 14 of the optical waveguide layer 12 perpendicularly are arranged, the tapered surfaces 15a, 16a of the cores 15, 16 having tapered surfaces are buried respectively in the wiring portion cores intersecting perpendicularly, and a first core 13 for turning the optical path of light propagating through the wiring portion core at the first core 15 with a tapered surface, and a second core 14 for turning the optical path of light passed through the first core 15 with a tapered surface at the second core 16 with a tapered surface are arranged alternately.