-
公开(公告)号:US11933895B2
公开(公告)日:2024-03-19
申请号:US18101824
申请日:2023-01-26
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Scott R. Campbell , John E. McWhirter , Matthew D. Weed , Lane A. Martin
IPC: G02B26/08 , G01S7/481 , G01S17/08 , G01S17/42 , G01S17/931 , G02B5/09 , G02B7/182 , G02B26/10 , G02B26/12 , G02B27/09 , G02B27/10 , G02B27/30 , H01L25/16 , H01L27/146 , G01S17/87 , G02B5/08 , G02B5/18 , G02B5/22
CPC classification number: G01S17/08 , G01S7/4813 , G01S7/4817 , G01S17/42 , G01S17/931 , G02B5/09 , G02B7/1821 , G02B26/101 , G02B26/105 , G02B26/123 , G02B26/125 , G02B27/0955 , G02B27/0977 , G02B27/1086 , G02B27/30 , H01L25/167 , H01L27/14643 , H01L27/14647 , G01S17/87 , G02B5/0841 , G02B5/1857 , G02B5/22 , H01L27/14694
Abstract: A lidar system includes one or more light sources configured to generate a first beam of light and a second beam of light, a scanner configured to scan the first and second beams of light across a field of regard of the lidar system, and a receiver configured to detect the first beam of light and the second beam of light scattered by one or more remote targets. The scanner includes a rotatable polygon mirror that includes multiple reflective surfaces angularly offset from one another along a periphery of the polygon mirror, the reflective surfaces configured to reflect the first and second beams of light to produce a series of scan lines as the polygon mirror rotates. The scanner also includes a pivotable scan mirror configured to (i) reflect the first and second beams of light and (ii) pivot to distribute the scan lines across the field of regard.
-
公开(公告)号:US10557940B2
公开(公告)日:2020-02-11
申请号:US15364085
申请日:2016-11-29
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin , Stephen D. Gaalema
IPC: G01C3/08 , G01S17/10 , G01S17/42 , G01S17/93 , G01S7/481 , G01S7/484 , G01S17/08 , H01S3/067 , H01S3/08 , H01S3/094 , H01S3/0941 , H01S3/10 , H01S3/11 , H01S5/40 , G01S7/48 , G01S7/483 , G01S17/02 , H01S3/00 , G01S17/00 , G01S17/06 , G01S17/88 , G01S7/487 , H01S3/16 , G01S17/32
Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light across a field of regard. The lidar system also includes a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system.
-
公开(公告)号:US20190235052A1
公开(公告)日:2019-08-01
申请号:US16378315
申请日:2019-04-08
Applicant: Luminar Technologies, Inc.
Inventor: Joseph G. LaChapelle , Matthew D. Weed , Scott R. Campbell , Jason M. Eichenholz , Austin K. Russell , Lane A. Martin
CPC classification number: G01S7/484 , G01S7/003 , G01S7/4868 , G01S7/497 , G01S17/10 , G01S17/42 , G01S17/936 , G01S17/95 , G01S2007/4975 , G01W1/02 , G01W1/14 , Y02A90/19
Abstract: In one embodiment, a method for dynamically varying receiver characteristics in a lidar system includes emitting light pulses by a light source in a lidar system. The method further includes detecting, by a receiver in the lidar system, light from one of the light pulses scattered by one or more remote targets to identify a return light pulse. The method also includes determining an atmospheric condition at or near a geolocation of a vehicle that includes the lidar system. The method further includes providing a control signal to the receiver adjusting one or more characteristics of the receiver to compensate for attenuation or distortion of the return light pulses associated with the atmospheric condition.
-
公开(公告)号:US10340653B2
公开(公告)日:2019-07-02
申请号:US15901838
申请日:2018-02-21
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: David Welford , Martin A. Jaspan , Jason M. Eichenholz , Scott R. Campbell , Lane A. Martin , Matthew D. Weed
IPC: G01S17/88 , H01S3/11 , G01S17/10 , H01S3/094 , H01S3/30 , G01S7/481 , H01S3/102 , H01S3/0941 , H01S3/06 , H01S3/113 , H01S3/08 , H01S3/16 , H01S3/00
Abstract: A lidar system can include a solid-state laser to emit pulses of light. The solid-state laser can include a Q-switched laser having a gain medium and a Q-switch. The lidar system can also include a scanner configured to scan the emitted pulses of light across a field of regard and a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system. The lidar system can also include a processor configured to determine the distance from the lidar system to the target based at least in part on a round-trip time of flight for an emitted pulse of light to travel from the lidar system to the target and back to the lidar system.
-
公开(公告)号:US10340651B1
公开(公告)日:2019-07-02
申请号:US16106238
申请日:2018-08-21
Applicant: Luminar Technologies, Inc.
Inventor: Mark A. Drummer , Scott R. Campbell , Alain Villeneuve , Laurance S. Lingvay
Abstract: In one embodiment, a lidar system includes a light source configured to emit a ranging pulse of light that is directed into a field of regard of the lidar system. The lidar system also includes a fiber-optic splitter configured to split off a portion of the ranging pulse of light to produce a trigger pulse of light that is directed to a receiver of the lidar system. The receiver is configured to detect, at a first time, at least a portion of the trigger pulse of light; and detect, at a second time subsequent to the first time, a portion of the ranging pulse of light scattered by a target located a distance from the lidar system. The lidar system further includes a processor configured to determine the distance from the lidar system to the target based at least in part on the first time and the second time.
-
公开(公告)号:US10267898B2
公开(公告)日:2019-04-23
申请号:US15871687
申请日:2018-01-15
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Scott R. Campbell , Rodger W. Cleye , Jason M. Eichenholz , Lane A. Martin , Matthew D. Weed
Abstract: A lidar system is disclosed. The lidar system can include a light source to produce first and second sets of pulses of light. The system can also include a first lidar sensor with a first scanner to scan the first set of pulses of light along a first scan pattern, and a first receiver to detect scattered light from the first set of pulses of light. The system can also include a second lidar sensor with a second scanner to scan the second set of pulses of light along a second scan pattern, and a second receiver to detect scattered light from the second set of pulses of light. The first scan pattern and the second scan pattern can be at least partially overlapped in an overlap region. The lidar system can also include an enclosure to contain the light source, the first lidar sensor, and the second lidar sensor.
-
公开(公告)号:US20190107623A1
公开(公告)日:2019-04-11
申请号:US16155243
申请日:2018-10-09
Applicant: Luminar Technologies, Inc.
Inventor: Scott R. Campbell , Matthew D. Weed , Lane A. Martin , Jason M. Eichenholz , Austin K. Russell
Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light along a scan pattern contained within an adjustable field of regard. The scanner includes a first scanning mirror configured to scan the portion of the emitted pulses of light substantially parallel to a first scan axis to produce multiple scan lines of the scan pattern, where each scan line is oriented substantially parallel to the first scan axis. The scanner also includes a second scanning mirror configured to distribute the scan lines along a second scan axis that is substantially orthogonal to the first scan axis, where the scan lines are distributed within the adjustable field of regard according to an adjustable second-axis scan profile.
-
公开(公告)号:US10121813B2
公开(公告)日:2018-11-06
申请号:US15909563
申请日:2018-03-01
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Jason M. Eichenholz , Scott R. Campbell , Joseph G. LaChapelle
IPC: G01S7/481 , H01L27/146 , H01L23/00 , G01S17/93
Abstract: To detect light from light pulses at the operating wavelength of a light source in a lidar system, a thin-film notch filter is directly deposited on a photodetector or a lens via vacuum deposition or monolithic epoxy. The thin-film notch filter may include an anti-reflective coating such as a pattern-coated dichroic filter having an optical transmission of 90% or greater at in-band wavelengths and less than 5% at out-of-band wavelengths. To deposit the filter onto the photodetector without disrupting electronic connections between the photodetector and an application-specific integrated circuit, the area surrounding the electrodes on the photodetector is kept open using photolithography.
-
公开(公告)号:US20180284286A1
公开(公告)日:2018-10-04
申请号:US15943467
申请日:2018-04-02
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Jason M. Eichenholz , Scott R. Campbell , Matthew D. Weed , Lane A. Martin
Abstract: A lidar system operating in a vehicle comprising a first eye configured to scan a first field of regard and a second eye configured to scan a second field of regard. Each of the first eye and the second eye includes a respective optical element configured to output a beam of light, a respective scan mirror configured to scan the beam of light along a vertical dimension of the respective field of regard, and a respective receiver configured to detect scattered light from the beam of light. The field of regard of the lidar system includes the first field of regard and the second field of regard, combined along a horizontal dimension of the first field of regard and the second field of regard.
-
公开(公告)号:US20180284242A1
公开(公告)日:2018-10-04
申请号:US15713192
申请日:2017-09-22
Applicant: Luminar Technologies, Inc.
Inventor: Scott R. Campbell
Abstract: A lidar system includes a light source configured to emit pulses of light, a scanner configured to direct the pulses of light along a scan direction, and a receiver with a detector configured to detect the pulses of light scattered by remote targets. For a pulse of light emitted by the light source, the receiver is configured to detect the scattered pulse of light returning to the receiver during a ranging time interval between (i) when the pulse of light leaves the lidar system and (ii) when the scattered pulse of light returns from a remote target positioned at a maximum distance RMAX. For at least a portion of the ranging time interval, the lidar system directs the scattered pulse of light toward the active region of the detector at an oblique angle to reduce an amount of light impinging on the active region.
-
-
-
-
-
-
-
-
-