Abstract:
Embodiments describe noise reduction methods and systems for imaging devices having a pixel array having a plurality of pixels, each pixel representing one of a plurality of captured colors and having an associated captured pixel value. Noise reduction methods filter a captured pixel value for a respective pixel based on the captured pixel values associated with pixels in a window of pixels surrounding the respective pixel. Disclosed embodiments provide a low cost noise reduction filtering process that takes advantage of the correlations among the red, green and blue color channels to efficiently remove noise while retaining image sharpness. A noise model can be used to derive a parameter of the noise reduction methods.
Abstract:
A non-frame-based motion detection method and apparatus for imagers requires only a few line buffers and little computation. The non-frame-based, low cost motion detection method and apparatus are well suited for “system-a-chip” (SOC) imager implementations.
Abstract:
Multiple-exposure high dynamic range image processing may be performed that filters pixel values that are distorted by blooming from nearby saturated pixels. Pixel values that are near saturated pixels may be identified as pixels that may be affected by blooming. The contributions from those pixels may be minimized when producing a final image. Multiple-exposure images may be linearly combined to produce a final high dynamic range image. Pixel values that may be distorted by blooming may be given less weight in the linear combination.
Abstract:
Electronic devices may include camera modules. A camera module may include an array camera having an array of lenses and an array of corresponding image sensors. Parallax correction and depth mapping methods may be provided for array cameras. A parallax correction method may include a global and a local parallax correction. A global parallax correction may be determined based on one-dimensional horizontal and vertical projections of edge images. Local parallax corrections may be determined using a block matching procedure. Further improvements to local parallax corrections may be generated using a relative block color saturation test, a smoothing of parallax correction vectors and, if desired, using a cross-check between parallax correction vectors determined for multiple image sensors. Three dimensional depth maps may be generated based on parallax correction vectors.
Abstract:
This is generally directed to systems and methods for local tone mapping of high dynamic range (“HDR”) images. For example, a HDR image can have its larger dynamic range mapped into the smaller dynamic range of a display device. In some embodiments, to perform the local tone mapping, a RGB to Y converter can be used to convert the input image signal to a luminance signal in the YCgCo color space, a shape adaptive filter can be used to separate the luminance signal into its illumination and reflectance components, contrast compression can be applied to the illumination component, image sharpening can be applied to the reflectance component, and the processed illumination and reflection components can be used to calculate a processed RGB signal. The dynamic range of the processed RGB signal can then be mapped into the dynamic range of the display device.
Abstract:
A noise reduction system that not only preserves details in images but also provides essentially clean, smooth, and natural looking homogeneous regions in images. The noise reduction system utilizes a dual-channel adaptive noise reduction technique. The input signal is first split into two channels (i.e., a low-pass channel and a high-pass channel), by a channel splitting filter. Then the two channel signals are processed separately. The low-pass channel signal is processed using an adaptive directional filter based on the estimation of the local 2D and 1D statistics and the detection of the local image structure direction. The high-pass channel signal is processed by a non-linear filtering method based on the estimation of the local statistics and the noise level of the high-pass channel signal, which is derived from the noise level of the original input signal. The processed signals from the two channels are summed together to get the final output.
Abstract:
A global and local statistics controlled noise reduction system in which the video image noise reduction processing is effectively adaptive to both image local structure and global noise level. A noise estimation method provides reliable global noise statistics to the noise reduction system. The noise reduction system dynamically/adaptively configures a local filter for processing each image pixel, and processes the pixel with that local filter. The filtering process of the noise reduction system is controlled by both global and local image statistics that are also computed by the system.
Abstract:
A grid detector detects the existence and the location of grids in DCT compressed videos. When a grid is detected in the input video, a post-processor is turned on and the de-blocking processing is applied on the grid detected by the grid detector. When no grid is detected, indicating that the input video is either an uncompressed video or an already de-blocked video, post-processing turned off to avoid degrading the picture quality. To detect grids, the grid detector: (a) computes horizontal and vertical second derivatives for all pixels of the image; (b) generates horizontal second derivative zero-crossing mask and vertical second derivative zero-crossing mask by marking the those pixels whose second derivatives have opposite signs with respect to their horizontal or vertical neighboring pixels'; (c) applies horizontal and vertical integral projections to the horizontal and vertical zero-crossing masks respectively; (d) generates the local maximum masks by locating the local maximum of the two projected 1-D signals; and (e) determines grid location by computing the positions of the local maximum masks.
Abstract:
A video quality adaptive coding artifact reduction system has a video quality analyzer, an artifact reducer, and a filter strength controller. The video quality analyzer employs input video quality analysis to control artifact reduction. The video quality analyzer accesses the video quality of the decoded video sequence to estimate the input video quality. The filter strength controller globally controls the filter strength of the artifact reducer based on the video quality estimate by the video quality analyzer. For low quality input video, the filter strength controller increases the artifact reduction filter strength to more efficiently reduce the artifact. For high quality input video, the filter strength controller decreases the artifact reduction filter strength to avoid blurring image detail.