Abstract:
Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device capable of delivering fluid to a user involves storing alert configuration information for the user, identifying an alert condition while operating the infusion device to deliver the fluid based at least in part on the alert configuration information for the user, and in response to identifying the alert condition, providing a user notification in accordance with the user's stored alert configuration information.
Abstract:
Fluid injection devices and related systems and operating methods are provided. An exemplary injection device includes an actuation arrangement to facilitate delivering fluid from a container, a user interface element coupled to the actuation arrangement, a data storage element to maintain one or more patient-specific parameter values and historical bolus data, and a control module coupled to the actuation arrangement and the data storage element. The control module of the injection device determines a bolus amount of the fluid to be delivered based at least in part on the one or more patient-specific parameter values and the historical bolus data in response to receiving a user input indicative of a desire to administer a bolus, and the control module configures the actuation arrangement to automatically deliver the bolus amount in response to manual actuation of the user interface element.
Abstract:
An insulin infusion device includes a processor architecture, and a memory element that stores executable instructions to perform a method of controlling delivery of insulin to a user. The method operates the device in a closed-loop mode to deliver insulin, obtains patient-specific parameters for a current time sample, and estimates a plasma insulin value and a blood glucose value for the user based on at least some of the patient-specific parameters. The estimating is also based on a previously estimated plasma insulin value obtained for a previous time sample, and a previously estimated blood glucose value obtained for the previous time sample. A predicted sensor glucose value is generated for the current time sample, and the closed-loop mode or a safe basal mode is selected for controlling operation of the insulin infusion device in accordance with the selected mode.
Abstract:
Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device to deliver fluid to a body of a user involves identifying a current site location on the body of the user associated with a sensing arrangement providing sensed measurements of a physiological condition in the body of the user at the current site location, determining one or more performance metrics associated with the current site location corresponding to operation of the infusion device to deliver the fluid in response to the sensed measurements, and providing sensor site feedback in a manner that is influenced by the one or more performance metrics. In one or more embodiments, the sensor site feedback includes recommended sensor site locations for rotation or replacement of the sensing arrangement determined based on historical data associated with the user for different sensor site locations.
Abstract:
Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device involves obtaining one or more measurement values of a physiological condition in the body of a user during an initial monitoring period and determining a fasting reference value for a metric based on the one or more measurement values. After the initial monitoring period, the method continues by obtaining an updated measurement value during a fasting period, determining a current value for the metric based at least in part on the updated measurement value, and generating a notification in response to a deviation between the current value and the fasting reference value exceeding a threshold indicative of insertion site loss or other loss of effectiveness.
Abstract:
Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device to deliver fluid to a body of a user involves identifying a current site location on the body of the user associated with a sensing arrangement providing sensed measurements of a physiological condition in the body of the user at the current site location, determining one or more performance metrics associated with the current site location corresponding to operation of the infusion device to deliver the fluid in response to the sensed measurements, and providing sensor site feedback in a manner that is influenced by the one or more performance metrics. In one or more embodiments, the sensor site feedback includes recommended sensor site locations for rotation or replacement of the sensing arrangement determined based on historical data associated with the user for different sensor site locations.
Abstract:
Processor-implemented methods of controlling an insulin infusion device for a user are provided here. A first method obtains a current insulin on board (IOB) value that estimates active insulin in the user, and compensates a calculated insulin infusion rate in response to the obtained IOB value. A second method supervises the operation of a glucose sensor by obtaining and processing insulin-delivered data and glucose sensor data for the user. An alert is generated if the second method determines that a current glucose sensor value has deviated from a predicted sensor glucose value by at least a threshold amount.
Abstract:
Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device capable of delivering fluid to a user involves identifying a condition of the user that is likely to influence a response to the fluid in the body of the user and classifying the condition as a first type of a plurality of types of conditions. After classifying the condition as the first type, the method continues by adjusting control information for operating the infusion device based on the first type and operating the infusion device to deliver the fluid to the user in accordance with the adjusted control information.
Abstract:
An electronic controller for an insulin infusion device includes a processor architecture and at least one memory element. The memory element stores executable instructions that, when executed by the processor architecture, provide an insulin on board (IOB) compensation module to estimate a current IOB value that indicates an amount of active insulin in the body of the user, calculate an IOB rate based at least in part on the estimated current IOB value, determine an adjusted insulin infusion rate based at least in part on the calculated IOB rate and an uncompensated insulin infusion rate, select a final insulin infusion rate for the device, and provide the selected final insulin infusion rate to regulate delivery of insulin by the device.
Abstract:
Processor-implemented methods of controlling an insulin infusion device for a user are provided here. A first method obtains and analyzes calibration factors (and corresponding timestamp data) for a continuous glucose sensor, and regulates entry into a closed-loop operating mode of the infusion device based on the calibration factors and timestamp data. A second method obtains a most recent sensor glucose value and a target glucose setpoint value for the user at the outset of the closed-loop mode. The second method adjusts the closed-loop insulin infusion rate over time, in response to the sensor glucose value and the setpoint value. A third method calculates an upper insulin limit that applies to the insulin infusion rate during the closed-loop mode. The insulin limit is calculated based on a fasting blood glucose value of the user, a total daily insulin value of the user, and fasting insulin delivery data for the user.