Abstract:
A heat-sensitive imaging element includes an IR dye having a structure according to Formula I, wherein at least one of the Rd groups is a group which is transformed by a chemical reaction, induced by exposure to IR-radiation or heat, into a group which is a stronger electron-donor than the Rd; or wherein at least one of the Ra groups is a group which is transformed by a chemical reaction, induced by exposure to IR-radiation or heat, into a group which is a stronger electron-acceptor than the Ra. The imaging element is able to form a visible print-out image with a high contrast directly after image-wise exposure by IR-radiation or heating.
Abstract:
A lithographic printing plate precursor includes a coating provided on a support having a hydrophilic surface, the coating containing thermoplastic polymer particles and an infrared radiation absorbing dye characterized in that the dye contains a substituent selected from bromo and iodo.
Abstract:
The present invention provides new intermediate compounds enabling the preparation of N-meso substituted cyanine, merocyanine or oxonole dyes wherein the N-meso substituent comprises electron withdrawing groups and wherein such N-meso substituents are introduced at the intermediate level. These intermediates enable the formation of dyes having in the meso-position N-substituents comprising electron withdrawing groups without the need for further derivatization of the meso-substituent at the dye level.
Abstract:
A heat-sensitive imaging element includes an IR dye, and more particularly a heat-sensitive lithographic printing plate precursor includes the IR dye. A method for making the lithographic printing plate produces a print-out image of high contrast upon exposure to IR-radiation or heating.
Abstract:
A heat-sensitive negative-working lithographic printing plate precursor comprising: a support having a hydrophilic surface or which is provided with a hydrophilic layer; and an image-recording layer comprising hydrophobic thermoplastic polymer particles and an infrared light absorbing dye; characterized in that: said image-recording layer further comprises a compound, said compound comprising an aromatic moiety and at least one acidic group or salt thereof and having a most bathochromic light absorption peak at a wavelength between 300 nm and 450 nm.
Abstract:
New divinylfluorene compounds according to one of formulae (II) or (III): a new synthetic route to divinylfluorene compounds; and the use of the new compounds as sensitizers, optical brighteners and electroluminescent materials.
Abstract:
A single-side coated silver halide photographic film material has been disclosed, said film material comprising a support, at least one light-sensitive emulsion layer and a substantially light-insensitive protective hydrophilic colloid layer farther away from said support than said emulsion layer, wherein said emulsion layer contains a silver halide emulsion rich in silver bromide with cubic crystals having an average numerical diameter in the range from 0.4 up to 0.8 &mgr;m, wherein at least 95 mole % of bromide ions are present, and wherein said hydrophilic colloid layer or another substantially light-insensitive hydrophilic colloid layer essentially comprises a hydrazide represented by the general formula (I) having a silver halide adsorbing group or a masked silver halide adsorbing group; besides a method for forming a diagnostic image comprising the steps of contacting said photographic film material with an intensifying screen, forming a film/screen assembly, and exposing said assembly to X-ray radiation with an energy lower than or equal to 70 kVp, and processing said film material during a time of 90 seconds or less in a processing cycle following the steps of developing, fixing, rinsing and drying, and wherein the developing proceeds in a radiographic developer composition essentially comprising a hydroquinone and a phenidone (a 1-phenyl-3-pyrazolidine-1-one compound) as a developing agent and a heteroatomic nitro-indazol.
Abstract:
A chemically and spectrally-sensitized emulsion has been described, wherein said emulsion comprising (100) cubic silver halide grains with an average edge length of from 0.2 up to 1.5 &mgr;m, has been spectrally sensitized by addition at least three trimethine dyes: a main spectral sensitizer added in an amount of at least 85 mole % of all spectral sensitizers added, followed by adding a second spectral sensitizer in an amount of not more than 10 mole % and a third spectral sensitizer in an amount of at most 1 mole % wherein at least said main spectral sensitizer has two benzoxazole rings in its chemical structure, at least said third spectral sensitizer has two benzimidazole rings in its chemical structure and wherein the said second spectral sensitizer has a structure more sterically hindered than the structure of the other spectral sensitizers. A light-sensitive silver halide photographic film material coated with such emulsion and a radiographic screen/film combination has been described.
Abstract:
A black-and-white silver halide photographic material has been disclosed, coated on a support with at least one light-sensitive emulsion layer, comprising a spectrally sensitized prefogged direct-positive silver halide emulsion, providing peak absorption in the wavelength range from 600 nm up to 700 nm, wherein said emulsion comprises a binder and core-shell emulsion crystals having silver bromide in a total amount of at least 80 mole %, characterized in that said emulsion is spectrally sensitized with a combination of a desensitizing dye having an absorption maximum wavelength in a range from 600 nm up to 700 nm, if present as a sole dye in said emulsion, and at least one azacyanine dye having an absorption maximum at a more hypsochromic wavelength.
Abstract:
A film material has been provided with emulsions comprising {111} tabular silver halide grains rich in silver bromide, spectrally sensitive to irradiation in the wavelength range shorter than 420 nm by the presence of at least one blue spectral sensitizer and of at least one azacyanine dye, the formula of which has been given in the description and in the claims. A radiographic screen/film combination or system has also been provided comprising a duplitized film sandwiched between a pair of supporting or self-supporting X-ray intensifying screens, characterized in that i) said pair of supported or self-supporting X-ray intensifying screens essentially consists of luminescent phosphor particles emitting at least 50% and more preferably at least 80% of their emitted radiation in the wavelength range shorter than 420 nm, ii) said film corresponds with the film material disclosed hereinbefore.